{ "cells": [ { "cell_type": "code", "execution_count": 6, "id": "07721677", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# from typing import Iterator\n", "from agno.agent import Agent, RunResponse,RunResponseEvent\n", "from typing import Iterator\n", "# from agno.models.openai import OpenAIChat\n", "from agno.utils.pprint import pprint_run_response\n", "from rich.pretty import pprint\n", "\n", "# agent = Agent(model=OpenAIChat(id=\"gpt-4o-mini\"))\n", "\n", "# # Run agent and return the response as a variable\n", "# response: RunResponse = agent.run(\"Tell me a 5 second short story about a robot\")\n", "\n", "# # Print the response in markdown format\n", "# pprint_run_response(response, markdown=True)\n", "\n", "from agno.agent import Agent\n", "from agno.models.openai import OpenAIChat, OpenAILike\n", "from agno.tools.reasoning import ReasoningTools\n", "from agno.tools.yfinance import YFinanceTools\n", "import os\n", "from textwrap import dedent\n", "import dotenv\n", "\n", "dotenv.load_dotenv()" ] }, { "cell_type": "code", "execution_count": 2, "id": "473a716e", "metadata": {}, "outputs": [], "source": [ "model = OpenAILike(\n", " id=\"qwen3-32b\",\n", " api_key=os.getenv(\"BAILIAN_API_KEY\"),\n", " base_url=os.getenv(\"BAILIAN_API_BASE_URL\"),\n", " request_params={\"extra_body\": {\"enable_thinking\": False}},\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "bb65de5a", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3cd0c24e001148909c3c86e13037084d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from agno.utils.log import debug_level\n",
    "\n",
    "\n",
    "def get_news(description: str):\n",
    "   print(f\"get_news: {description}\", )\n",
    "   return \"No news\"\n",
    "\n",
    "agent = Agent(\n",
    "    model=model,\n",
    "    tool_choice=\"auto\",\n",
    "    tools=[YFinanceTools(stock_price=True)],\n",
    "#    tools= [get_news],\n",
    "    # instructions=\"Use tables to display data. Don't include any other text.\",\n",
    "    # instructions=dedent(\"\"\"\\\n",
    "    #     You are a seasoned Wall Street analyst with deep expertise in market analysis! 📊\n",
    "\n",
    "    #     Follow these steps for comprehensive financial analysis:\n",
    "    #     1. Market Overview\n",
    "    #        - Latest stock price\n",
    "    #        - 52-week high and low\n",
    "    #     2. Financial Deep Dive\n",
    "    #        - Key metrics (P/E, Market Cap, EPS)\n",
    "    #     3. Professional Insights\n",
    "    #        - Analyst recommendations breakdown\n",
    "    #        - Recent rating changes\n",
    "\n",
    "    #     4. Market Context\n",
    "    #        - Industry trends and positioning\n",
    "    #        - Competitive analysis\n",
    "    #        - Market sentiment indicators\n",
    "\n",
    "    #     Your reporting style:\n",
    "    #     - Begin with an executive summary\n",
    "    #     - Use tables for data presentation\n",
    "    #     - Include clear section headers\n",
    "    #     - Add emoji indicators for trends (📈 📉)\n",
    "    #     - Highlight key insights with bullet points\n",
    "    #     - Compare metrics to industry averages\n",
    "    #     - Include technical term explanations\n",
    "    #     - End with a forward-looking analysis\n",
    "\n",
    "    #     Risk Disclosure:\n",
    "    #     - Always highlight potential risk factors\n",
    "    #     - Note market uncertainties\n",
    "    #     - Mention relevant regulatory concerns\n",
    "    # \"\"\"),\n",
    "    add_datetime_to_instructions=True,\n",
    "    show_tool_calls=True,\n",
    "   #  markdown=True,\n",
    "    # markdown=True,\n",
    "    # show_tool_calls=True,\n",
    "    # debug_mode=True, debug_level=2\n",
    ")\n",
    "\n",
    "\n",
    "pprint_run_response(agent.run(\n",
    "    \"Tell me a 5 second short story about a lion\",\n",
    "    stream=True, show_message=True\n",
    "    ))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "927a70d0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c4e88c67d8de4c19a6790f3f1835cede",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tool calls: [{'id': 'call_4c2c8551b4d249f8a3f58a', 'type': 'function', 'function': {'name': 'get_current_stock_price', 'arguments': '{\"symbol\": \"NVDA\"}'}}]\n",
      "Tool calls: [{'id': 'call_4c2c8551b4d249f8a3f58a', 'type': 'function', 'function': {'name': 'get_current_stock_price', 'arguments': '{\"symbol\": \"NVDA\"}'}}]\n",
      "--------------- Metrics ---------------\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
MessageMetrics(\n",
       "│   input_tokens=218,\n",
       "│   output_tokens=22,\n",
       "│   total_tokens=240,\n",
       "│   audio_tokens=0,\n",
       "│   input_audio_tokens=0,\n",
       "│   output_audio_tokens=0,\n",
       "│   cached_tokens=0,\n",
       "│   cache_write_tokens=0,\n",
       "│   reasoning_tokens=0,\n",
       "│   prompt_tokens=218,\n",
       "│   completion_tokens=22,\n",
       "│   prompt_tokens_details=None,\n",
       "│   completion_tokens_details=None,\n",
       "│   additional_metrics=None,\n",
       "│   time=1.3018417499988573,\n",
       "│   time_to_first_token=1.3011846250010421,\n",
       "│   timer=<agno.utils.timer.Timer object at 0x15c4545d0>\n",
       ")\n",
       "
\n" ], "text/plain": [ "\u001b[1;35mMessageMetrics\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_tokens\u001b[0m=\u001b[1;36m218\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_tokens\u001b[0m=\u001b[1;36m22\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtotal_tokens\u001b[0m=\u001b[1;36m240\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33maudio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcached_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcache_write_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mreasoning_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens\u001b[0m=\u001b[1;36m218\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens\u001b[0m=\u001b[1;36m22\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33madditional_metrics\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime\u001b[0m=\u001b[1;36m1\u001b[0m\u001b[1;36m.3018417499988573\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime_to_first_token\u001b[0m=\u001b[1;36m1\u001b[0m\u001b[1;36m.3011846250010421\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtimer\u001b[0m=\u001b[1m<\u001b[0m\u001b[1;95magno.utils.timer.Timer\u001b[0m\u001b[39m object at \u001b[0m\u001b[1;36m0x15c4545d0\u001b[0m\u001b[1m>\u001b[0m\n", "\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "------------------------------------------------------------\n", "Message: It seems I'm currently rate-limited and unable to fetch the stock price for NVDA. Please try again later or check a financial platform for real-time stock information.\n", "--------------- Metrics ---------------\n" ] }, { "data": { "text/html": [ "
MessageMetrics(\n",
       "│   input_tokens=273,\n",
       "│   output_tokens=34,\n",
       "│   total_tokens=307,\n",
       "│   audio_tokens=0,\n",
       "│   input_audio_tokens=0,\n",
       "│   output_audio_tokens=0,\n",
       "│   cached_tokens=0,\n",
       "│   cache_write_tokens=0,\n",
       "│   reasoning_tokens=0,\n",
       "│   prompt_tokens=273,\n",
       "│   completion_tokens=34,\n",
       "│   prompt_tokens_details=None,\n",
       "│   completion_tokens_details=None,\n",
       "│   additional_metrics=None,\n",
       "│   time=1.7436456249997718,\n",
       "│   time_to_first_token=1.7402209589999984,\n",
       "│   timer=<agno.utils.timer.Timer object at 0x15b177910>\n",
       ")\n",
       "
\n" ], "text/plain": [ "\u001b[1;35mMessageMetrics\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_tokens\u001b[0m=\u001b[1;36m273\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_tokens\u001b[0m=\u001b[1;36m34\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtotal_tokens\u001b[0m=\u001b[1;36m307\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33maudio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcached_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcache_write_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mreasoning_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens\u001b[0m=\u001b[1;36m273\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens\u001b[0m=\u001b[1;36m34\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33madditional_metrics\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime\u001b[0m=\u001b[1;36m1\u001b[0m\u001b[1;36m.7436456249997718\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime_to_first_token\u001b[0m=\u001b[1;36m1\u001b[0m\u001b[1;36m.7402209589999984\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtimer\u001b[0m=\u001b[1m<\u001b[0m\u001b[1;95magno.utils.timer.Timer\u001b[0m\u001b[39m object at \u001b[0m\u001b[1;36m0x15b177910\u001b[0m\u001b[1m>\u001b[0m\n", "\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "------------------------------------------------------------\n", "--------------- Collected Metrics ---------------\n" ] }, { "data": { "text/html": [ "
{\n",
       "│   'input_tokens': [218, 273],\n",
       "│   'output_tokens': [22, 34],\n",
       "│   'total_tokens': [240, 307],\n",
       "│   'audio_tokens': [0, 0],\n",
       "│   'input_audio_tokens': [0, 0],\n",
       "│   'output_audio_tokens': [0, 0],\n",
       "│   'cached_tokens': [0, 0],\n",
       "│   'cache_write_tokens': [0, 0],\n",
       "│   'reasoning_tokens': [0, 0],\n",
       "│   'prompt_tokens': [218, 273],\n",
       "│   'completion_tokens': [22, 34],\n",
       "│   'time': [1.3018417499988573, 1.7436456249997718],\n",
       "│   'time_to_first_token': [1.3011846250010421, 1.7402209589999984]\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'input_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m218\u001b[0m, \u001b[1;36m273\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'output_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m22\u001b[0m, \u001b[1;36m34\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'total_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m240\u001b[0m, \u001b[1;36m307\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'audio_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'input_audio_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'output_audio_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'cached_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'cache_write_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'reasoning_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'prompt_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m218\u001b[0m, \u001b[1;36m273\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'completion_tokens'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m22\u001b[0m, \u001b[1;36m34\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'time'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m1.3018417499988573\u001b[0m, \u001b[1;36m1.7436456249997718\u001b[0m\u001b[1m]\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[32m'time_to_first_token'\u001b[0m: \u001b[1m[\u001b[0m\u001b[1;36m1.3011846250010421\u001b[0m, \u001b[1;36m1.7402209589999984\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "--------------- Session Metrics ---------------\n" ] }, { "data": { "text/html": [ "
SessionMetrics(\n",
       "│   input_tokens=712,\n",
       "│   output_tokens=109,\n",
       "│   total_tokens=821,\n",
       "│   audio_tokens=0,\n",
       "│   input_audio_tokens=0,\n",
       "│   output_audio_tokens=0,\n",
       "│   cached_tokens=0,\n",
       "│   cache_write_tokens=0,\n",
       "│   reasoning_tokens=0,\n",
       "│   prompt_tokens=712,\n",
       "│   completion_tokens=109,\n",
       "│   prompt_tokens_details=None,\n",
       "│   completion_tokens_details=None,\n",
       "│   additional_metrics=None,\n",
       "│   time=4.989817458998004,\n",
       "│   time_to_first_token=1.5254021249966172,\n",
       "│   timer=None\n",
       ")\n",
       "
\n" ], "text/plain": [ "\u001b[1;35mSessionMetrics\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_tokens\u001b[0m=\u001b[1;36m712\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_tokens\u001b[0m=\u001b[1;36m109\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtotal_tokens\u001b[0m=\u001b[1;36m821\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33maudio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33minput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33moutput_audio_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcached_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcache_write_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mreasoning_tokens\u001b[0m=\u001b[1;36m0\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens\u001b[0m=\u001b[1;36m712\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens\u001b[0m=\u001b[1;36m109\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mprompt_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mcompletion_tokens_details\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33madditional_metrics\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime\u001b[0m=\u001b[1;36m4\u001b[0m\u001b[1;36m.989817458998004\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtime_to_first_token\u001b[0m=\u001b[1;36m1\u001b[0m\u001b[1;36m.5254021249966172\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mtimer\u001b[0m=\u001b[3;35mNone\u001b[0m\n", "\u001b[1m)\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "agent.print_response(\n", " \"What is the stock price of NVDA\", stream=True\n", ")\n", "\n", "# Print metrics per message\n", "if getattr(agent.run_response, \"messages\", None) is not None:\n", " for message in agent.run_response.messages or []:\n", " if getattr(message, \"role\", None) == \"assistant\":\n", " if getattr(message, \"content\", None):\n", " print(f\"Message: {message.content}\")\n", " elif getattr(message, \"tool_calls\", None):\n", " print(f\"Tool calls: {message.tool_calls}\")\n", " print(f\"Tool calls: {message.tool_calls}\")\n", " print(\"---\" * 5, \"Metrics\", \"---\" * 5)\n", " pprint(message.metrics)\n", " print(\"---\" * 20)\n", "\n", "# Print the aggregated metrics for the whole run\n", "print(\"---\" * 5, \"Collected Metrics\", \"---\" * 5)\n", "pprint(agent.run_response.metrics)\n", "# Print the aggregated metrics for the whole session\n", "print(\"---\" * 5, \"Session Metrics\", \"---\" * 5)\n", "pprint(agent.session_metrics)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }