|
|
@@ -0,0 +1,676 @@
|
|
|
+# -*- encoding: utf-8 -*-
|
|
|
+# @Author: SWHL
|
|
|
+# @Contact: liekkaskono@163.com
|
|
|
+import copy
|
|
|
+import math
|
|
|
+
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+from scipy.spatial import distance as dist
|
|
|
+from skimage import measure
|
|
|
+
|
|
|
+
|
|
|
+def bbox_decode(heat, wh, reg=None, K=100):
|
|
|
+ """bbox组成:[V1, V2, V3, V4]
|
|
|
+ V1~V4: bbox的4个坐标点
|
|
|
+ """
|
|
|
+ batch = heat.shape[0]
|
|
|
+ heat, keep = _nms(heat)
|
|
|
+ scores, inds, clses, ys, xs = _topk(heat, K=K)
|
|
|
+ if reg is not None:
|
|
|
+ reg = _tranpose_and_gather_feat(reg, inds)
|
|
|
+ reg = reg.reshape(batch, K, 2)
|
|
|
+ xs = xs.reshape(batch, K, 1) + reg[:, :, 0:1]
|
|
|
+ ys = ys.reshape(batch, K, 1) + reg[:, :, 1:2]
|
|
|
+ else:
|
|
|
+ xs = xs.reshape(batch, K, 1) + 0.5
|
|
|
+ ys = ys.reshape(batch, K, 1) + 0.5
|
|
|
+
|
|
|
+ wh = _tranpose_and_gather_feat(wh, inds)
|
|
|
+ wh = wh.reshape(batch, K, 8)
|
|
|
+ clses = clses.reshape(batch, K, 1).astype(np.float32)
|
|
|
+ scores = scores.reshape(batch, K, 1)
|
|
|
+
|
|
|
+ bboxes = np.concatenate(
|
|
|
+ [
|
|
|
+ xs - wh[..., 0:1],
|
|
|
+ ys - wh[..., 1:2],
|
|
|
+ xs - wh[..., 2:3],
|
|
|
+ ys - wh[..., 3:4],
|
|
|
+ xs - wh[..., 4:5],
|
|
|
+ ys - wh[..., 5:6],
|
|
|
+ xs - wh[..., 6:7],
|
|
|
+ ys - wh[..., 7:8],
|
|
|
+ ],
|
|
|
+ axis=2,
|
|
|
+ )
|
|
|
+ detections = np.concatenate([bboxes, scores, clses], axis=2)
|
|
|
+ return detections, inds
|
|
|
+
|
|
|
+
|
|
|
+def _nms(heat, kernel=3):
|
|
|
+ pad = (kernel - 1) // 2
|
|
|
+ hmax = max_pool(heat, kernel_size=kernel, stride=1, padding=pad)
|
|
|
+ keep = hmax == heat
|
|
|
+ return heat * keep, keep
|
|
|
+
|
|
|
+
|
|
|
+def max_pool(img, kernel_size, stride, padding):
|
|
|
+ h, w = img.shape[2:]
|
|
|
+ img = np.pad(
|
|
|
+ img,
|
|
|
+ ((0, 0), (0, 0), (padding, padding), (padding, padding)),
|
|
|
+ "constant",
|
|
|
+ constant_values=0,
|
|
|
+ )
|
|
|
+
|
|
|
+ res_h = ((h + 2 - kernel_size) // stride) + 1
|
|
|
+ res_w = ((w + 2 - kernel_size) // stride) + 1
|
|
|
+ res = np.zeros((img.shape[0], img.shape[1], res_h, res_w))
|
|
|
+ for i in range(res_h):
|
|
|
+ for j in range(res_w):
|
|
|
+ temp = img[
|
|
|
+ :,
|
|
|
+ :,
|
|
|
+ i * stride : i * stride + kernel_size,
|
|
|
+ j * stride : j * stride + kernel_size,
|
|
|
+ ]
|
|
|
+ res[:, :, i, j] = temp.max()
|
|
|
+ return res
|
|
|
+
|
|
|
+
|
|
|
+def _topk(scores, K=40):
|
|
|
+ batch, cat, height, width = scores.shape
|
|
|
+
|
|
|
+ topk_scores, topk_inds = find_topk(scores.reshape(batch, cat, -1), K)
|
|
|
+
|
|
|
+ topk_inds = topk_inds % (height * width)
|
|
|
+ topk_ys = topk_inds / width
|
|
|
+ topk_xs = np.float32(np.int32(topk_inds % width))
|
|
|
+
|
|
|
+ topk_score, topk_ind = find_topk(topk_scores.reshape(batch, -1), K)
|
|
|
+ topk_clses = np.int32(topk_ind / K)
|
|
|
+ topk_inds = _gather_feat(topk_inds.reshape(batch, -1, 1), topk_ind).reshape(
|
|
|
+ batch, K
|
|
|
+ )
|
|
|
+ topk_ys = _gather_feat(topk_ys.reshape(batch, -1, 1), topk_ind).reshape(batch, K)
|
|
|
+ topk_xs = _gather_feat(topk_xs.reshape(batch, -1, 1), topk_ind).reshape(batch, K)
|
|
|
+
|
|
|
+ return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
|
|
|
+
|
|
|
+
|
|
|
+def find_topk(a, k, axis=-1, largest=True, sorted=True):
|
|
|
+ if axis is None:
|
|
|
+ axis_size = a.size
|
|
|
+ else:
|
|
|
+ axis_size = a.shape[axis]
|
|
|
+ assert 1 <= k <= axis_size
|
|
|
+
|
|
|
+ a = np.asanyarray(a)
|
|
|
+ if largest:
|
|
|
+ index_array = np.argpartition(a, axis_size - k, axis=axis)
|
|
|
+ topk_indices = np.take(index_array, -np.arange(k) - 1, axis=axis)
|
|
|
+ else:
|
|
|
+ index_array = np.argpartition(a, k - 1, axis=axis)
|
|
|
+ topk_indices = np.take(index_array, np.arange(k), axis=axis)
|
|
|
+
|
|
|
+ topk_values = np.take_along_axis(a, topk_indices, axis=axis)
|
|
|
+ if sorted:
|
|
|
+ sorted_indices_in_topk = np.argsort(topk_values, axis=axis)
|
|
|
+ if largest:
|
|
|
+ sorted_indices_in_topk = np.flip(sorted_indices_in_topk, axis=axis)
|
|
|
+
|
|
|
+ sorted_topk_values = np.take_along_axis(
|
|
|
+ topk_values, sorted_indices_in_topk, axis=axis
|
|
|
+ )
|
|
|
+ sorted_topk_indices = np.take_along_axis(
|
|
|
+ topk_indices, sorted_indices_in_topk, axis=axis
|
|
|
+ )
|
|
|
+ return sorted_topk_values, sorted_topk_indices
|
|
|
+ return topk_values, topk_indices
|
|
|
+
|
|
|
+
|
|
|
+def _gather_feat(feat, ind):
|
|
|
+ dim = feat.shape[2]
|
|
|
+ ind = np.broadcast_to(ind[:, :, None], (ind.shape[0], ind.shape[1], dim))
|
|
|
+ feat = _gather_np(feat, 1, ind)
|
|
|
+ return feat
|
|
|
+
|
|
|
+
|
|
|
+def _gather_np(data, dim, index):
|
|
|
+ """
|
|
|
+ Gathers values along an axis specified by dim.
|
|
|
+ For a 3-D tensor the output is specified by:
|
|
|
+ out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
|
|
|
+ out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
|
|
|
+ out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
|
|
|
+
|
|
|
+ :param dim: The axis along which to index
|
|
|
+ :param index: A tensor of indices of elements to gather
|
|
|
+ :return: tensor of gathered values
|
|
|
+ """
|
|
|
+ idx_xsection_shape = index.shape[:dim] + index.shape[dim + 1 :]
|
|
|
+ data_xsection_shape = data.shape[:dim] + data.shape[dim + 1 :]
|
|
|
+ if idx_xsection_shape != data_xsection_shape:
|
|
|
+ raise ValueError(
|
|
|
+ "Except for dimension "
|
|
|
+ + str(dim)
|
|
|
+ + ", all dimensions of index and data should be the same size"
|
|
|
+ )
|
|
|
+
|
|
|
+ if index.dtype != np.int64:
|
|
|
+ raise TypeError("The values of index must be integers")
|
|
|
+
|
|
|
+ data_swaped = np.swapaxes(data, 0, dim)
|
|
|
+ index_swaped = np.swapaxes(index, 0, dim)
|
|
|
+ gathered = np.take_along_axis(data_swaped, index_swaped, axis=0)
|
|
|
+ return np.swapaxes(gathered, 0, dim)
|
|
|
+
|
|
|
+
|
|
|
+def _tranpose_and_gather_feat(feat, ind):
|
|
|
+ feat = np.ascontiguousarray(np.transpose(feat, [0, 2, 3, 1]))
|
|
|
+ feat = feat.reshape(feat.shape[0], -1, feat.shape[3])
|
|
|
+ feat = _gather_feat(feat, ind)
|
|
|
+ return feat
|
|
|
+
|
|
|
+
|
|
|
+def gbox_decode(mk, st_reg, reg=None, K=400):
|
|
|
+ """gbox的组成:[V1, P1, P2, P3, P4]
|
|
|
+ P1~P4: 四个框的中心点
|
|
|
+ V1: 四个框的交点
|
|
|
+ """
|
|
|
+ batch = mk.shape[0]
|
|
|
+ mk, keep = _nms(mk)
|
|
|
+ scores, inds, clses, ys, xs = _topk(mk, K=K)
|
|
|
+ if reg is not None:
|
|
|
+ reg = _tranpose_and_gather_feat(reg, inds)
|
|
|
+ reg = reg.reshape(batch, K, 2)
|
|
|
+ xs = xs.reshape(batch, K, 1) + reg[:, :, 0:1]
|
|
|
+ ys = ys.reshape(batch, K, 1) + reg[:, :, 1:2]
|
|
|
+ else:
|
|
|
+ xs = xs.reshape(batch, K, 1) + 0.5
|
|
|
+ ys = ys.reshape(batch, K, 1) + 0.5
|
|
|
+
|
|
|
+ scores = scores.reshape(batch, K, 1)
|
|
|
+ clses = clses.reshape(batch, K, 1).astype(np.float32)
|
|
|
+ st_Reg = _tranpose_and_gather_feat(st_reg, inds)
|
|
|
+
|
|
|
+ bboxes = np.concatenate(
|
|
|
+ [
|
|
|
+ xs - st_Reg[..., 0:1],
|
|
|
+ ys - st_Reg[..., 1:2],
|
|
|
+ xs - st_Reg[..., 2:3],
|
|
|
+ ys - st_Reg[..., 3:4],
|
|
|
+ xs - st_Reg[..., 4:5],
|
|
|
+ ys - st_Reg[..., 5:6],
|
|
|
+ xs - st_Reg[..., 6:7],
|
|
|
+ ys - st_Reg[..., 7:8],
|
|
|
+ ],
|
|
|
+ axis=2,
|
|
|
+ )
|
|
|
+ return np.concatenate([xs, ys, bboxes, scores, clses], axis=2), keep
|
|
|
+
|
|
|
+
|
|
|
+def transform_preds(coords, center, scale, output_size, rot=0):
|
|
|
+ target_coords = np.zeros(coords.shape)
|
|
|
+ trans = get_affine_transform(center, scale, rot, output_size, inv=1)
|
|
|
+ for p in range(coords.shape[0]):
|
|
|
+ target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
|
|
|
+ return target_coords
|
|
|
+
|
|
|
+
|
|
|
+def get_affine_transform(
|
|
|
+ center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0
|
|
|
+):
|
|
|
+ if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
|
|
|
+ scale = np.array([scale, scale], dtype=np.float32)
|
|
|
+
|
|
|
+ scale_tmp = scale
|
|
|
+ src_w = scale_tmp[0]
|
|
|
+ dst_w = output_size[0]
|
|
|
+ dst_h = output_size[1]
|
|
|
+
|
|
|
+ rot_rad = np.pi * rot / 180
|
|
|
+ src_dir = get_dir([0, src_w * -0.5], rot_rad)
|
|
|
+ dst_dir = np.array([0, dst_w * -0.5], np.float32)
|
|
|
+
|
|
|
+ src = np.zeros((3, 2), dtype=np.float32)
|
|
|
+ dst = np.zeros((3, 2), dtype=np.float32)
|
|
|
+ src[0, :] = center + scale_tmp * shift
|
|
|
+ src[1, :] = center + src_dir + scale_tmp * shift
|
|
|
+ dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
|
|
+ dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir
|
|
|
+
|
|
|
+ src[2:, :] = get_3rd_point(src[0, :], src[1, :])
|
|
|
+ dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
|
|
|
+
|
|
|
+ if inv:
|
|
|
+ trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
|
|
+ else:
|
|
|
+ trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
|
|
+
|
|
|
+ return trans
|
|
|
+
|
|
|
+
|
|
|
+def affine_transform(pt, t):
|
|
|
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32).T
|
|
|
+ new_pt = np.dot(t, new_pt)
|
|
|
+ return new_pt[:2]
|
|
|
+
|
|
|
+
|
|
|
+def get_dir(src_point, rot_rad):
|
|
|
+ sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
|
|
+
|
|
|
+ src_result = [0, 0]
|
|
|
+ src_result[0] = src_point[0] * cs - src_point[1] * sn
|
|
|
+ src_result[1] = src_point[0] * sn + src_point[1] * cs
|
|
|
+
|
|
|
+ return src_result
|
|
|
+
|
|
|
+
|
|
|
+def get_3rd_point(a, b):
|
|
|
+ direct = a - b
|
|
|
+ return b + np.array([-direct[1], direct[0]], dtype=np.float32)
|
|
|
+
|
|
|
+
|
|
|
+def bbox_post_process(bbox, c, s, h, w):
|
|
|
+ for i in range(bbox.shape[0]):
|
|
|
+ bbox[i, :, 0:2] = transform_preds(bbox[i, :, 0:2], c[i], s[i], (w, h))
|
|
|
+ bbox[i, :, 2:4] = transform_preds(bbox[i, :, 2:4], c[i], s[i], (w, h))
|
|
|
+ bbox[i, :, 4:6] = transform_preds(bbox[i, :, 4:6], c[i], s[i], (w, h))
|
|
|
+ bbox[i, :, 6:8] = transform_preds(bbox[i, :, 6:8], c[i], s[i], (w, h))
|
|
|
+ return bbox
|
|
|
+
|
|
|
+
|
|
|
+def gbox_post_process(gbox, c, s, h, w):
|
|
|
+ for i in range(gbox.shape[0]):
|
|
|
+ gbox[i, :, 0:2] = transform_preds(gbox[i, :, 0:2], c[i], s[i], (w, h))
|
|
|
+ gbox[i, :, 2:4] = transform_preds(gbox[i, :, 2:4], c[i], s[i], (w, h))
|
|
|
+ gbox[i, :, 4:6] = transform_preds(gbox[i, :, 4:6], c[i], s[i], (w, h))
|
|
|
+ gbox[i, :, 6:8] = transform_preds(gbox[i, :, 6:8], c[i], s[i], (w, h))
|
|
|
+ gbox[i, :, 8:10] = transform_preds(gbox[i, :, 8:10], c[i], s[i], (w, h))
|
|
|
+ return gbox
|
|
|
+
|
|
|
+
|
|
|
+def nms(dets, thresh):
|
|
|
+ if len(dets) < 2:
|
|
|
+ return dets
|
|
|
+
|
|
|
+ index_keep, keep = [], []
|
|
|
+ for i in range(len(dets)):
|
|
|
+ box = dets[i]
|
|
|
+ if box[-1] < thresh:
|
|
|
+ break
|
|
|
+
|
|
|
+ max_score_index = -1
|
|
|
+ ctx = (dets[i][0] + dets[i][2] + dets[i][4] + dets[i][6]) / 4
|
|
|
+ cty = (dets[i][1] + dets[i][3] + dets[i][5] + dets[i][7]) / 4
|
|
|
+
|
|
|
+ for j in range(len(dets)):
|
|
|
+ if i == j or dets[j][-1] < thresh:
|
|
|
+ break
|
|
|
+
|
|
|
+ x1, y1 = dets[j][0], dets[j][1]
|
|
|
+ x2, y2 = dets[j][2], dets[j][3]
|
|
|
+ x3, y3 = dets[j][4], dets[j][5]
|
|
|
+ x4, y4 = dets[j][6], dets[j][7]
|
|
|
+ a = (x2 - x1) * (cty - y1) - (y2 - y1) * (ctx - x1)
|
|
|
+ b = (x3 - x2) * (cty - y2) - (y3 - y2) * (ctx - x2)
|
|
|
+ c = (x4 - x3) * (cty - y3) - (y4 - y3) * (ctx - x3)
|
|
|
+ d = (x1 - x4) * (cty - y4) - (y1 - y4) * (ctx - x4)
|
|
|
+ if all(x > 0 for x in (a, b, c, d)) or all(x < 0 for x in (a, b, c, d)):
|
|
|
+ if dets[i][8] > dets[j][8] and max_score_index < 0:
|
|
|
+ max_score_index = i
|
|
|
+ elif dets[i][8] < dets[j][8]:
|
|
|
+ max_score_index = -2
|
|
|
+ break
|
|
|
+
|
|
|
+ if max_score_index > -1:
|
|
|
+ index_keep.append(max_score_index)
|
|
|
+ elif max_score_index == -1:
|
|
|
+ index_keep.append(i)
|
|
|
+
|
|
|
+ keep = [dets[index_keep[i]] for i in range(len(index_keep))]
|
|
|
+ return np.array(keep)
|
|
|
+
|
|
|
+
|
|
|
+def group_bbox_by_gbox(
|
|
|
+ bboxes, gboxes, score_thred=0.3, v2c_dist_thred=2, c2v_dist_thred=0.5
|
|
|
+):
|
|
|
+ def point_in_box(box, point):
|
|
|
+ x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
|
|
|
+ x3, y3, x4, y4 = box[4], box[5], box[6], box[7]
|
|
|
+ ctx, cty = point[0], point[1]
|
|
|
+ a = (x2 - x1) * (cty - y1) - (y2 - y1) * (ctx - x1)
|
|
|
+ b = (x3 - x2) * (cty - y2) - (y3 - y2) * (ctx - x2)
|
|
|
+ c = (x4 - x3) * (cty - y3) - (y4 - y3) * (ctx - x3)
|
|
|
+ d = (x1 - x4) * (cty - y4) - (y1 - y4) * (ctx - x4)
|
|
|
+ if all(x > 0 for x in (a, b, c, d)) or all(x < 0 for x in (a, b, c, d)):
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+
|
|
|
+ def get_distance(pt1, pt2):
|
|
|
+ return math.sqrt(
|
|
|
+ (pt1[0] - pt2[0]) * (pt1[0] - pt2[0])
|
|
|
+ + (pt1[1] - pt2[1]) * (pt1[1] - pt2[1])
|
|
|
+ )
|
|
|
+
|
|
|
+ dets = copy.deepcopy(bboxes)
|
|
|
+ sign = np.zeros((len(dets), 4))
|
|
|
+
|
|
|
+ for gbox in gboxes:
|
|
|
+ if gbox[10] < score_thred:
|
|
|
+ break
|
|
|
+
|
|
|
+ vertex = [gbox[0], gbox[1]]
|
|
|
+ for i in range(4):
|
|
|
+ center = [gbox[2 * i + 2], gbox[2 * i + 3]]
|
|
|
+ if get_distance(vertex, center) < v2c_dist_thred:
|
|
|
+ continue
|
|
|
+
|
|
|
+ for k, bbox in enumerate(dets):
|
|
|
+ if bbox[8] < score_thred:
|
|
|
+ break
|
|
|
+
|
|
|
+ if sum(sign[k]) == 4:
|
|
|
+ continue
|
|
|
+
|
|
|
+ w = (abs(bbox[6] - bbox[0]) + abs(bbox[4] - bbox[2])) / 2
|
|
|
+ h = (abs(bbox[3] - bbox[1]) + abs(bbox[5] - bbox[7])) / 2
|
|
|
+ m = max(w, h)
|
|
|
+ if point_in_box(bbox, center):
|
|
|
+ min_dist, min_id = 1e4, -1
|
|
|
+ for j in range(4):
|
|
|
+ dist = get_distance(vertex, [bbox[2 * j], bbox[2 * j + 1]])
|
|
|
+ if dist < min_dist:
|
|
|
+ min_dist = dist
|
|
|
+ min_id = j
|
|
|
+
|
|
|
+ if (
|
|
|
+ min_id > -1
|
|
|
+ and min_dist < c2v_dist_thred * m
|
|
|
+ and sign[k][min_id] == 0
|
|
|
+ ):
|
|
|
+ bboxes[k][2 * min_id] = vertex[0]
|
|
|
+ bboxes[k][2 * min_id + 1] = vertex[1]
|
|
|
+ sign[k][min_id] = 1
|
|
|
+ return bboxes
|
|
|
+
|
|
|
+
|
|
|
+def get_table_line(binimg, axis=0, lineW=10):
|
|
|
+ ##获取表格线
|
|
|
+ ##axis=0 横线
|
|
|
+ ##axis=1 竖线
|
|
|
+ labels = measure.label(binimg > 0, connectivity=2) # 8连通区域标记
|
|
|
+ regions = measure.regionprops(labels)
|
|
|
+ if axis == 1:
|
|
|
+ lineboxes = [
|
|
|
+ min_area_rect(line.coords)
|
|
|
+ for line in regions
|
|
|
+ if line.bbox[2] - line.bbox[0] > lineW
|
|
|
+ ]
|
|
|
+ else:
|
|
|
+ lineboxes = [
|
|
|
+ min_area_rect(line.coords)
|
|
|
+ for line in regions
|
|
|
+ if line.bbox[3] - line.bbox[1] > lineW
|
|
|
+ ]
|
|
|
+ return lineboxes
|
|
|
+
|
|
|
+
|
|
|
+def min_area_rect(coords):
|
|
|
+ """
|
|
|
+ 多边形外接矩形
|
|
|
+ """
|
|
|
+ rect = cv2.minAreaRect(coords[:, ::-1])
|
|
|
+ box = cv2.boxPoints(rect)
|
|
|
+ box = box.reshape((8,)).tolist()
|
|
|
+
|
|
|
+ box = image_location_sort_box(box)
|
|
|
+
|
|
|
+ x1, y1, x2, y2, x3, y3, x4, y4 = box
|
|
|
+ degree, w, h, cx, cy = calculate_center_rotate_angle(box)
|
|
|
+ if w < h:
|
|
|
+ xmin = (x1 + x2) / 2
|
|
|
+ xmax = (x3 + x4) / 2
|
|
|
+ ymin = (y1 + y2) / 2
|
|
|
+ ymax = (y3 + y4) / 2
|
|
|
+
|
|
|
+ else:
|
|
|
+ xmin = (x1 + x4) / 2
|
|
|
+ xmax = (x2 + x3) / 2
|
|
|
+ ymin = (y1 + y4) / 2
|
|
|
+ ymax = (y2 + y3) / 2
|
|
|
+ # degree,w,h,cx,cy = solve(box)
|
|
|
+ # x1,y1,x2,y2,x3,y3,x4,y4 = box
|
|
|
+ # return {'degree':degree,'w':w,'h':h,'cx':cx,'cy':cy}
|
|
|
+ return [xmin, ymin, xmax, ymax]
|
|
|
+
|
|
|
+
|
|
|
+def image_location_sort_box(box):
|
|
|
+ x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
|
|
|
+ pts = (x1, y1), (x2, y2), (x3, y3), (x4, y4)
|
|
|
+ pts = np.array(pts, dtype="float32")
|
|
|
+ (x1, y1), (x2, y2), (x3, y3), (x4, y4) = _order_points(pts)
|
|
|
+ return [x1, y1, x2, y2, x3, y3, x4, y4]
|
|
|
+
|
|
|
+
|
|
|
+def calculate_center_rotate_angle(box):
|
|
|
+ """
|
|
|
+ 绕 cx,cy点 w,h 旋转 angle 的坐标,能一定程度缓解图片的内部倾斜,但是还是依赖模型稳妥
|
|
|
+ x = cx-w/2
|
|
|
+ y = cy-h/2
|
|
|
+ x1-cx = -w/2*cos(angle) +h/2*sin(angle)
|
|
|
+ y1 -cy= -w/2*sin(angle) -h/2*cos(angle)
|
|
|
+
|
|
|
+ h(x1-cx) = -wh/2*cos(angle) +hh/2*sin(angle)
|
|
|
+ w(y1 -cy)= -ww/2*sin(angle) -hw/2*cos(angle)
|
|
|
+ (hh+ww)/2sin(angle) = h(x1-cx)-w(y1 -cy)
|
|
|
+
|
|
|
+ """
|
|
|
+ x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
|
|
|
+ cx = (x1 + x3 + x2 + x4) / 4.0
|
|
|
+ cy = (y1 + y3 + y4 + y2) / 4.0
|
|
|
+ w = (
|
|
|
+ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
|
|
+ + np.sqrt((x3 - x4) ** 2 + (y3 - y4) ** 2)
|
|
|
+ ) / 2
|
|
|
+ h = (
|
|
|
+ np.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)
|
|
|
+ + np.sqrt((x1 - x4) ** 2 + (y1 - y4) ** 2)
|
|
|
+ ) / 2
|
|
|
+ # x = cx-w/2
|
|
|
+ # y = cy-h/2
|
|
|
+ sinA = (h * (x1 - cx) - w * (y1 - cy)) * 1.0 / (h * h + w * w) * 2
|
|
|
+ angle = np.arcsin(sinA)
|
|
|
+ return angle, w, h, cx, cy
|
|
|
+
|
|
|
+
|
|
|
+def _order_points(pts):
|
|
|
+ # 根据x坐标对点进行排序
|
|
|
+ """
|
|
|
+ ---------------------
|
|
|
+ 本项目中是为了排序后得到[(xmin,ymin),(xmax,ymin),(xmax,ymax),(xmin,ymax)]
|
|
|
+ 作者:Tong_T
|
|
|
+ 来源:CSDN
|
|
|
+ 原文:https://blog.csdn.net/Tong_T/article/details/81907132
|
|
|
+ 版权声明:本文为博主原创文章,转载请附上博文链接!
|
|
|
+ """
|
|
|
+ x_sorted = pts[np.argsort(pts[:, 0]), :]
|
|
|
+
|
|
|
+ left_most = x_sorted[:2, :]
|
|
|
+ right_most = x_sorted[2:, :]
|
|
|
+ left_most = left_most[np.argsort(left_most[:, 1]), :]
|
|
|
+ (tl, bl) = left_most
|
|
|
+
|
|
|
+ distance = dist.cdist(tl[np.newaxis], right_most, "euclidean")[0]
|
|
|
+ (br, tr) = right_most[np.argsort(distance)[::-1], :]
|
|
|
+
|
|
|
+ return np.array([tl, tr, br, bl], dtype="float32")
|
|
|
+
|
|
|
+
|
|
|
+def sqrt(p1, p2):
|
|
|
+ return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
|
|
|
+
|
|
|
+
|
|
|
+def adjust_lines(lines, alph=50, angle=50):
|
|
|
+ lines_n = len(lines)
|
|
|
+ new_lines = []
|
|
|
+ for i in range(lines_n):
|
|
|
+ x1, y1, x2, y2 = lines[i]
|
|
|
+ cx1, cy1 = (x1 + x2) / 2, (y1 + y2) / 2
|
|
|
+ for j in range(lines_n):
|
|
|
+ if i != j:
|
|
|
+ x3, y3, x4, y4 = lines[j]
|
|
|
+ cx2, cy2 = (x3 + x4) / 2, (y3 + y4) / 2
|
|
|
+ if (x3 < cx1 < x4 or y3 < cy1 < y4) or (
|
|
|
+ x1 < cx2 < x2 or y1 < cy2 < y2
|
|
|
+ ): # 判断两个横线在y方向的投影重不重合
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ r = sqrt((x1, y1), (x3, y3))
|
|
|
+ k = abs((y3 - y1) / (x3 - x1 + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if r < alph and a < angle:
|
|
|
+ new_lines.append((x1, y1, x3, y3))
|
|
|
+
|
|
|
+ r = sqrt((x1, y1), (x4, y4))
|
|
|
+ k = abs((y4 - y1) / (x4 - x1 + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if r < alph and a < angle:
|
|
|
+ new_lines.append((x1, y1, x4, y4))
|
|
|
+
|
|
|
+ r = sqrt((x2, y2), (x3, y3))
|
|
|
+ k = abs((y3 - y2) / (x3 - x2 + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if r < alph and a < angle:
|
|
|
+ new_lines.append((x2, y2, x3, y3))
|
|
|
+ r = sqrt((x2, y2), (x4, y4))
|
|
|
+ k = abs((y4 - y2) / (x4 - x2 + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if r < alph and a < angle:
|
|
|
+ new_lines.append((x2, y2, x4, y4))
|
|
|
+ return new_lines
|
|
|
+
|
|
|
+
|
|
|
+def final_adjust_lines(rowboxes, colboxes):
|
|
|
+ nrow = len(rowboxes)
|
|
|
+ ncol = len(colboxes)
|
|
|
+ for i in range(nrow):
|
|
|
+ for j in range(ncol):
|
|
|
+ rowboxes[i] = line_to_line(rowboxes[i], colboxes[j], alpha=20, angle=30)
|
|
|
+ colboxes[j] = line_to_line(colboxes[j], rowboxes[i], alpha=20, angle=30)
|
|
|
+ return rowboxes, colboxes
|
|
|
+
|
|
|
+
|
|
|
+def draw_lines(im, bboxes, color=(0, 0, 0), lineW=3):
|
|
|
+ """
|
|
|
+ boxes: bounding boxes
|
|
|
+ """
|
|
|
+ tmp = np.copy(im)
|
|
|
+ c = color
|
|
|
+ h, w = im.shape[:2]
|
|
|
+
|
|
|
+ for box in bboxes:
|
|
|
+ x1, y1, x2, y2 = box[:4]
|
|
|
+ cv2.line(
|
|
|
+ tmp, (int(x1), int(y1)), (int(x2), int(y2)), c, lineW, lineType=cv2.LINE_AA
|
|
|
+ )
|
|
|
+
|
|
|
+ return tmp
|
|
|
+
|
|
|
+
|
|
|
+def line_to_line(points1, points2, alpha=10, angle=30):
|
|
|
+ """
|
|
|
+ 线段之间的距离
|
|
|
+ """
|
|
|
+ x1, y1, x2, y2 = points1
|
|
|
+ ox1, oy1, ox2, oy2 = points2
|
|
|
+ xy = np.array([(x1, y1), (x2, y2)], dtype="float32")
|
|
|
+ A1, B1, C1 = fit_line(xy)
|
|
|
+ oxy = np.array([(ox1, oy1), (ox2, oy2)], dtype="float32")
|
|
|
+ A2, B2, C2 = fit_line(oxy)
|
|
|
+ flag1 = point_line_cor(np.array([x1, y1], dtype="float32"), A2, B2, C2)
|
|
|
+ flag2 = point_line_cor(np.array([x2, y2], dtype="float32"), A2, B2, C2)
|
|
|
+
|
|
|
+ if (flag1 > 0 and flag2 > 0) or (flag1 < 0 and flag2 < 0): # 横线或者竖线在竖线或者横线的同一侧
|
|
|
+ if (A1 * B2 - A2 * B1) != 0:
|
|
|
+ x = (B1 * C2 - B2 * C1) / (A1 * B2 - A2 * B1)
|
|
|
+ y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1)
|
|
|
+ # x, y = round(x, 2), round(y, 2)
|
|
|
+ p = (x, y) # 横线与竖线的交点
|
|
|
+ r0 = sqrt(p, (x1, y1))
|
|
|
+ r1 = sqrt(p, (x2, y2))
|
|
|
+
|
|
|
+ if min(r0, r1) < alpha: # 若交点与线起点或者终点的距离小于alpha,则延长线到交点
|
|
|
+ if r0 < r1:
|
|
|
+ k = abs((y2 - p[1]) / (x2 - p[0] + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if a < angle or abs(90 - a) < angle:
|
|
|
+ points1 = np.array([p[0], p[1], x2, y2], dtype="float32")
|
|
|
+ else:
|
|
|
+ k = abs((y1 - p[1]) / (x1 - p[0] + 1e-10))
|
|
|
+ a = math.atan(k) * 180 / math.pi
|
|
|
+ if a < angle or abs(90 - a) < angle:
|
|
|
+ points1 = np.array([x1, y1, p[0], p[1]], dtype="float32")
|
|
|
+ return points1
|
|
|
+
|
|
|
+
|
|
|
+def min_area_rect_box(
|
|
|
+ regions, flag=True, W=0, H=0, filtersmall=False, adjust_box=False
|
|
|
+):
|
|
|
+ """
|
|
|
+ 多边形外接矩形
|
|
|
+ """
|
|
|
+ boxes = []
|
|
|
+ for region in regions:
|
|
|
+ if region.bbox_area > H * W * 3 / 4: # 过滤大的单元格
|
|
|
+ continue
|
|
|
+ rect = cv2.minAreaRect(region.coords[:, ::-1])
|
|
|
+
|
|
|
+ box = cv2.boxPoints(rect)
|
|
|
+ box = box.reshape((8,)).tolist()
|
|
|
+ box = image_location_sort_box(box)
|
|
|
+ x1, y1, x2, y2, x3, y3, x4, y4 = box
|
|
|
+ angle, w, h, cx, cy = calculate_center_rotate_angle(box)
|
|
|
+ # if adjustBox:
|
|
|
+ # x1, y1, x2, y2, x3, y3, x4, y4 = xy_rotate_box(cx, cy, w + 5, h + 5, angle=0, degree=None)
|
|
|
+ # x1, x4 = max(x1, 0), max(x4, 0)
|
|
|
+ # y1, y2 = max(y1, 0), max(y2, 0)
|
|
|
+
|
|
|
+ # if w > 32 and h > 32 and flag:
|
|
|
+ # if abs(angle / np.pi * 180) < 20:
|
|
|
+ # if filtersmall and (w < 10 or h < 10):
|
|
|
+ # continue
|
|
|
+ # boxes.append([x1, y1, x2, y2, x3, y3, x4, y4])
|
|
|
+ # else:
|
|
|
+ if w * h < 0.5 * W * H:
|
|
|
+ if filtersmall and (
|
|
|
+ w < 15 or h < 15
|
|
|
+ ): # or w / h > 30 or h / w > 30): # 过滤小的单元格
|
|
|
+ continue
|
|
|
+ boxes.append([x1, y1, x2, y2, x3, y3, x4, y4])
|
|
|
+ return boxes
|
|
|
+
|
|
|
+
|
|
|
+def point_line_cor(p, A, B, C):
|
|
|
+ ##判断点与线之间的位置关系
|
|
|
+ # 一般式直线方程(Ax+By+c)=0
|
|
|
+ x, y = p
|
|
|
+ r = A * x + B * y + C
|
|
|
+ return r
|
|
|
+
|
|
|
+
|
|
|
+def fit_line(p):
|
|
|
+ """A = Y2 - Y1
|
|
|
+ B = X1 - X2
|
|
|
+ C = X2*Y1 - X1*Y2
|
|
|
+ AX+BY+C=0
|
|
|
+ 直线一般方程
|
|
|
+ """
|
|
|
+ x1, y1 = p[0]
|
|
|
+ x2, y2 = p[1]
|
|
|
+ A = y2 - y1
|
|
|
+ B = x1 - x2
|
|
|
+ C = x2 * y1 - x1 * y2
|
|
|
+ return A, B, C
|