| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # Copyright (c) Opendatalab. All rights reserved.
- import os
- from io import BytesIO
- import numpy as np
- import pypdfium2 as pdfium
- from loguru import logger
- from PIL import Image
- from mineru.data.data_reader_writer import FileBasedDataWriter
- from mineru.utils.check_sys_env import is_windows_environment
- from mineru.utils.os_env_config import get_load_images_timeout
- from mineru.utils.pdf_reader import image_to_b64str, image_to_bytes, page_to_image
- from mineru.utils.enum_class import ImageType
- from mineru.utils.hash_utils import str_sha256
- from mineru.utils.pdf_page_id import get_end_page_id
- from concurrent.futures import ProcessPoolExecutor, TimeoutError as FuturesTimeoutError
- def pdf_page_to_image(page: pdfium.PdfPage, dpi=200, image_type=ImageType.PIL) -> dict:
- """Convert pdfium.PdfDocument to image, Then convert the image to base64.
- Args:
- page (_type_): pdfium.PdfPage
- dpi (int, optional): reset the dpi of dpi. Defaults to 200.
- image_type (ImageType, optional): The type of image to return. Defaults to ImageType.PIL.
- Returns:
- dict: {'img_base64': str, 'img_pil': pil_img, 'scale': float }
- """
- pil_img, scale = page_to_image(page, dpi=dpi)
- image_dict = {
- "scale": scale,
- }
- if image_type == ImageType.BASE64:
- image_dict["img_base64"] = image_to_b64str(pil_img)
- else:
- image_dict["img_pil"] = pil_img
- return image_dict
- def _load_images_from_pdf_worker(pdf_bytes, dpi, start_page_id, end_page_id, image_type):
- """用于进程池的包装函数"""
- return load_images_from_pdf_core(pdf_bytes, dpi, start_page_id, end_page_id, image_type)
- def load_images_from_pdf(
- pdf_bytes: bytes,
- dpi=200,
- start_page_id=0,
- end_page_id=None,
- image_type=ImageType.PIL,
- timeout=None,
- threads=4,
- ):
- """带超时控制的 PDF 转图片函数,支持多进程加速
- Args:
- pdf_bytes (bytes): PDF 文件的 bytes
- dpi (int, optional): reset the dpi of dpi. Defaults to 200.
- start_page_id (int, optional): 起始页码. Defaults to 0.
- end_page_id (int | None, optional): 结束页码. Defaults to None.
- image_type (ImageType, optional): 图片类型. Defaults to ImageType.PIL.
- timeout (int): 超时时间(秒),默认 300 秒
- threads (int): 进程数,默认 4
- Raises:
- TimeoutError: 当转换超时时抛出
- """
- pdf_doc = pdfium.PdfDocument(pdf_bytes)
- if is_windows_environment():
- # Windows 环境下不使用多进程
- return load_images_from_pdf_core(
- pdf_bytes,
- dpi,
- start_page_id,
- get_end_page_id(end_page_id, len(pdf_doc)),
- image_type
- ), pdf_doc
- else:
- if timeout is None:
- timeout = get_load_images_timeout()
- end_page_id = get_end_page_id(end_page_id, len(pdf_doc))
- # 计算总页数
- total_pages = end_page_id - start_page_id + 1
- # 实际使用的进程数不超过总页数
- actual_threads = min(min(os.cpu_count() or 1, threads), total_pages)
- # 根据实际进程数分组页面范围
- pages_per_thread = max(1, total_pages // actual_threads)
- page_ranges = []
- for i in range(actual_threads):
- range_start = start_page_id + i * pages_per_thread
- if i == actual_threads - 1:
- # 最后一个线程处理剩余所有页面
- range_end = end_page_id
- else:
- range_end = start_page_id + (i + 1) * pages_per_thread - 1
- page_ranges.append((range_start, range_end))
- # logger.debug(f"PDF to images using {actual_threads} processes, page ranges: {page_ranges}")
- with ProcessPoolExecutor(max_workers=actual_threads) as executor:
- # 提交所有任务
- futures = []
- for range_start, range_end in page_ranges:
- future = executor.submit(
- _load_images_from_pdf_worker,
- pdf_bytes,
- dpi,
- range_start,
- range_end,
- image_type
- )
- futures.append((range_start, future))
- try:
- # 收集结果并按页码排序
- all_results = []
- for range_start, future in futures:
- images_list = future.result(timeout=timeout)
- all_results.append((range_start, images_list))
- # 按起始页码排序并合并结果
- all_results.sort(key=lambda x: x[0])
- images_list = []
- for _, imgs in all_results:
- images_list.extend(imgs)
- return images_list, pdf_doc
- except FuturesTimeoutError:
- pdf_doc.close()
- executor.shutdown(wait=False, cancel_futures=True)
- raise TimeoutError(f"PDF to images conversion timeout after {timeout}s")
- def load_images_from_pdf_core(
- pdf_bytes: bytes,
- dpi=200,
- start_page_id=0,
- end_page_id=None,
- image_type=ImageType.PIL, # PIL or BASE64
- ):
- images_list = []
- pdf_doc = pdfium.PdfDocument(pdf_bytes)
- pdf_page_num = len(pdf_doc)
- end_page_id = get_end_page_id(end_page_id, pdf_page_num)
- for index in range(start_page_id, end_page_id + 1):
- # logger.debug(f"Converting page {index}/{pdf_page_num} to image")
- page = pdf_doc[index]
- image_dict = pdf_page_to_image(page, dpi=dpi, image_type=image_type)
- images_list.append(image_dict)
- pdf_doc.close()
- return images_list
- def cut_image(bbox: tuple, page_num: int, page_pil_img, return_path, image_writer: FileBasedDataWriter, scale=2):
- """从第page_num页的page中,根据bbox进行裁剪出一张jpg图片,返回图片路径 save_path:需要同时支持s3和本地,
- 图片存放在save_path下,文件名是:
- {page_num}_{bbox[0]}_{bbox[1]}_{bbox[2]}_{bbox[3]}.jpg , bbox内数字取整。"""
- # 拼接文件名
- filename = f"{page_num}_{int(bbox[0])}_{int(bbox[1])}_{int(bbox[2])}_{int(bbox[3])}"
- # 老版本返回不带bucket的路径
- img_path = f"{return_path}_{filename}" if return_path is not None else None
- # 新版本生成平铺路径
- img_hash256_path = f"{str_sha256(img_path)}.jpg"
- # img_hash256_path = f'{img_path}.jpg'
- crop_img = get_crop_img(bbox, page_pil_img, scale=scale)
- img_bytes = image_to_bytes(crop_img, image_format="JPEG")
- image_writer.write(img_hash256_path, img_bytes)
- return img_hash256_path
- def get_crop_img(bbox: tuple, pil_img, scale=2):
- scale_bbox = (
- int(bbox[0] * scale),
- int(bbox[1] * scale),
- int(bbox[2] * scale),
- int(bbox[3] * scale),
- )
- return pil_img.crop(scale_bbox)
- def get_crop_np_img(bbox: tuple, input_img, scale=2):
- if isinstance(input_img, Image.Image):
- np_img = np.asarray(input_img)
- elif isinstance(input_img, np.ndarray):
- np_img = input_img
- else:
- raise ValueError("Input must be a pillow object or a numpy array.")
- scale_bbox = (
- int(bbox[0] * scale),
- int(bbox[1] * scale),
- int(bbox[2] * scale),
- int(bbox[3] * scale),
- )
- return np_img[scale_bbox[1]:scale_bbox[3], scale_bbox[0]:scale_bbox[2]]
- def images_bytes_to_pdf_bytes(image_bytes):
- # 内存缓冲区
- pdf_buffer = BytesIO()
- # 载入并转换所有图像为 RGB 模式
- image = Image.open(BytesIO(image_bytes)).convert("RGB")
- # 第一张图保存为 PDF,其余追加
- image.save(pdf_buffer, format="PDF", save_all=True)
- # 获取 PDF bytes 并重置指针(可选)
- pdf_bytes = pdf_buffer.getvalue()
- pdf_buffer.close()
- return pdf_bytes
|