middle.json 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302
  1. {
  2. "pdf_info": [
  3. {
  4. "preproc_blocks": [
  5. {
  6. "type": "text",
  7. "bbox": [
  8. 47,
  9. 57,
  10. 299,
  11. 93
  12. ],
  13. "lines": [
  14. {
  15. "bbox": [
  16. 47,
  17. 57,
  18. 299,
  19. 68
  20. ],
  21. "spans": [
  22. {
  23. "bbox": [
  24. 49,
  25. 57,
  26. 298,
  27. 68
  28. ],
  29. "score": 0.98,
  30. "content": "of the synthetic stereo scene from a single camera perspective",
  31. "type": "text"
  32. }
  33. ]
  34. },
  35. {
  36. "bbox": [
  37. 47,
  38. 71,
  39. 299,
  40. 80
  41. ],
  42. "spans": [
  43. {
  44. "bbox": [
  45. 49,
  46. 71,
  47. 299,
  48. 80
  49. ],
  50. "score": 0.96,
  51. "content": "along with the ground truth disparity,occlusion map,and",
  52. "type": "text"
  53. }
  54. ]
  55. },
  56. {
  57. "bbox": [
  58. 47,
  59. 82,
  60. 123,
  61. 93
  62. ],
  63. "spans": [
  64. {
  65. "bbox": [
  66. 49,
  67. 82,
  68. 123,
  69. 93
  70. ],
  71. "score": 0.99,
  72. "content": "discontinuitymap.",
  73. "type": "text"
  74. }
  75. ]
  76. }
  77. ]
  78. },
  79. {
  80. "type": "image",
  81. "bbox": [
  82. 47,
  83. 100,
  84. 301,
  85. 535
  86. ],
  87. "blocks": [
  88. {
  89. "bbox": [
  90. 51,
  91. 100,
  92. 292,
  93. 484
  94. ],
  95. "type": "image_body",
  96. "lines": [
  97. {
  98. "bbox": [
  99. 51,
  100. 100,
  101. 292,
  102. 484
  103. ],
  104. "spans": [
  105. {
  106. "bbox": [
  107. 51,
  108. 100,
  109. 292,
  110. 484
  111. ],
  112. "score": 0.9999815225601196,
  113. "type": "image",
  114. "image_path": "b07d74524eac6f46b5505b48b1e10db23f2b45cb2d21d5fec72e967e61255811.jpg"
  115. }
  116. ]
  117. }
  118. ]
  119. },
  120. {
  121. "bbox": [
  122. 47,
  123. 488,
  124. 301,
  125. 535
  126. ],
  127. "type": "image_caption",
  128. "lines": [
  129. {
  130. "bbox": [
  131. 49,
  132. 490,
  133. 299,
  134. 499
  135. ],
  136. "spans": [
  137. {
  138. "bbox": [
  139. 49,
  140. 490,
  141. 299,
  142. 499
  143. ],
  144. "score": 1.0,
  145. "content": "Figure2:Twosampleframesfromthesyntheticvideose-",
  146. "type": "text"
  147. }
  148. ]
  149. },
  150. {
  151. "bbox": [
  152. 48,
  153. 501,
  154. 300,
  155. 512
  156. ],
  157. "spans": [
  158. {
  159. "bbox": [
  160. 48,
  161. 501,
  162. 300,
  163. 512
  164. ],
  165. "score": 1.0,
  166. "content": "quence (1st row), along with their corresponding ground truth",
  167. "type": "text"
  168. }
  169. ]
  170. },
  171. {
  172. "bbox": [
  173. 48,
  174. 513,
  175. 299,
  176. 523
  177. ],
  178. "spans": [
  179. {
  180. "bbox": [
  181. 48,
  182. 513,
  183. 299,
  184. 523
  185. ],
  186. "score": 0.98,
  187. "content": "disparity (2nd row), occlusion map (3rd row), and discontinuity",
  188. "type": "text"
  189. }
  190. ]
  191. },
  192. {
  193. "bbox": [
  194. 48,
  195. 525,
  196. 110,
  197. 535
  198. ],
  199. "spans": [
  200. {
  201. "bbox": [
  202. 48,
  203. 525,
  204. 110,
  205. 535
  206. ],
  207. "score": 0.99,
  208. "content": "map (4th row).",
  209. "type": "text"
  210. }
  211. ]
  212. }
  213. ]
  214. }
  215. ]
  216. },
  217. {
  218. "type": "text",
  219. "bbox": [
  220. 47,
  221. 549,
  222. 299,
  223. 678
  224. ],
  225. "lines": [
  226. {
  227. "bbox": [
  228. 58,
  229. 549,
  230. 299,
  231. 558
  232. ],
  233. "spans": [
  234. {
  235. "bbox": [
  236. 58,
  237. 549,
  238. 298,
  239. 558
  240. ],
  241. "score": 0.98,
  242. "content": "Theresultsof temporalstereomatching aregiveninFigure",
  243. "type": "text"
  244. }
  245. ]
  246. },
  247. {
  248. "bbox": [
  249. 47,
  250. 561,
  251. 299,
  252. 570
  253. ],
  254. "spans": [
  255. {
  256. "bbox": [
  257. 47,
  258. 561,
  259. 298,
  260. 570
  261. ],
  262. "score": 0.98,
  263. "content": "3foruniformadditivenoiseconfinedtotherangesof±O",
  264. "type": "text"
  265. }
  266. ]
  267. },
  268. {
  269. "bbox": [
  270. 47,
  271. 573,
  272. 299,
  273. 582
  274. ],
  275. "spans": [
  276. {
  277. "bbox": [
  278. 49,
  279. 573,
  280. 299,
  281. 582
  282. ],
  283. "score": 0.96,
  284. "content": "±20, and ±40. Each performance plot is given as a function",
  285. "type": "text"
  286. }
  287. ]
  288. },
  289. {
  290. "bbox": [
  291. 47,
  292. 585,
  293. 299,
  294. 594
  295. ],
  296. "spans": [
  297. {
  298. "bbox": [
  299. 48,
  300. 585,
  301. 299,
  302. 594
  303. ],
  304. "score": 0.95,
  305. "content": "of the feedback coefficient X. As with the majority of temporal",
  306. "type": "text"
  307. }
  308. ]
  309. },
  310. {
  311. "bbox": [
  312. 47,
  313. 597,
  314. 299,
  315. 606
  316. ],
  317. "spans": [
  318. {
  319. "bbox": [
  320. 49,
  321. 597,
  322. 299,
  323. 606
  324. ],
  325. "score": 0.99,
  326. "content": "stereomatching methods,improvements are negligible when",
  327. "type": "text"
  328. }
  329. ]
  330. },
  331. {
  332. "bbox": [
  333. 47,
  334. 609,
  335. 299,
  336. 618
  337. ],
  338. "spans": [
  339. {
  340. "bbox": [
  341. 48,
  342. 609,
  343. 299,
  344. 618
  345. ],
  346. "score": 0.97,
  347. "content": "no noise is added to the images [1o], [19]. This is largely due",
  348. "type": "text"
  349. }
  350. ]
  351. },
  352. {
  353. "bbox": [
  354. 47,
  355. 621,
  356. 299,
  357. 629
  358. ],
  359. "spans": [
  360. {
  361. "bbox": [
  362. 48,
  363. 621,
  364. 299,
  365. 629
  366. ],
  367. "score": 1.0,
  368. "content": "tothefactthatthevideousedtoevaluatethesemethodsis",
  369. "type": "text"
  370. }
  371. ]
  372. },
  373. {
  374. "bbox": [
  375. 47,
  376. 633,
  377. 299,
  378. 641
  379. ],
  380. "spans": [
  381. {
  382. "bbox": [
  383. 48,
  384. 633,
  385. 299,
  386. 641
  387. ],
  388. "score": 1.0,
  389. "content": "computergeneratedwithverylittlenoisetostartwith,thus",
  390. "type": "text"
  391. }
  392. ]
  393. },
  394. {
  395. "bbox": [
  396. 47,
  397. 644,
  398. 299,
  399. 654
  400. ],
  401. "spans": [
  402. {
  403. "bbox": [
  404. 48,
  405. 644,
  406. 299,
  407. 654
  408. ],
  409. "score": 0.98,
  410. "content": "the noise suppression achieved with temporal stereo matching",
  411. "type": "text"
  412. }
  413. ]
  414. },
  415. {
  416. "bbox": [
  417. 47,
  418. 657,
  419. 299,
  420. 666
  421. ],
  422. "spans": [
  423. {
  424. "bbox": [
  425. 48,
  426. 657,
  427. 299,
  428. 666
  429. ],
  430. "score": 0.98,
  431. "content": "showslittletonoimprovementovermethodsthatoperate on",
  432. "type": "text"
  433. }
  434. ]
  435. },
  436. {
  437. "bbox": [
  438. 47,
  439. 669,
  440. 113,
  441. 678
  442. ],
  443. "spans": [
  444. {
  445. "bbox": [
  446. 48,
  447. 669,
  448. 113,
  449. 678
  450. ],
  451. "score": 1.0,
  452. "content": "pairsofimages.",
  453. "type": "text"
  454. }
  455. ]
  456. }
  457. ]
  458. },
  459. {
  460. "type": "text",
  461. "bbox": [
  462. 47,
  463. 680,
  464. 299,
  465. 725
  466. ],
  467. "lines": [
  468. {
  469. "bbox": [
  470. 58,
  471. 680,
  472. 299,
  473. 690
  474. ],
  475. "spans": [
  476. {
  477. "bbox": [
  478. 59,
  479. 680,
  480. 298,
  481. 690
  482. ],
  483. "score": 0.97,
  484. "content": "Significantimprovementsin accuracy canbeseenin Figure",
  485. "type": "text"
  486. }
  487. ]
  488. },
  489. {
  490. "bbox": [
  491. 47,
  492. 692,
  493. 299,
  494. 701
  495. ],
  496. "spans": [
  497. {
  498. "bbox": [
  499. 48,
  500. 692,
  501. 298,
  502. 701
  503. ],
  504. "score": 0.97,
  505. "content": "3 when the noise has ranges of ±20, and ±40.In this scenario",
  506. "type": "text"
  507. }
  508. ]
  509. },
  510. {
  511. "bbox": [
  512. 47,
  513. 703,
  514. 299,
  515. 714
  516. ],
  517. "spans": [
  518. {
  519. "bbox": [
  520. 48,
  521. 703,
  522. 299,
  523. 714
  524. ],
  525. "score": 0.98,
  526. "content": "the effect of noise in the current frame is reduced by increasing",
  527. "type": "text"
  528. }
  529. ]
  530. },
  531. {
  532. "bbox": [
  533. 47,
  534. 716,
  535. 299,
  536. 725
  537. ],
  538. "spans": [
  539. {
  540. "bbox": [
  541. 48,
  542. 716,
  543. 299,
  544. 725
  545. ],
  546. "score": 0.96,
  547. "content": "thefeedbackcoefficientX.Thisincreasing ofXhas theeffect",
  548. "type": "text"
  549. }
  550. ]
  551. }
  552. ]
  553. },
  554. {
  555. "type": "image",
  556. "bbox": [
  557. 310,
  558. 55,
  559. 564,
  560. 371
  561. ],
  562. "blocks": [
  563. {
  564. "bbox": [
  565. 314,
  566. 55,
  567. 538,
  568. 305
  569. ],
  570. "type": "image_body",
  571. "lines": [
  572. {
  573. "bbox": [
  574. 314,
  575. 55,
  576. 538,
  577. 305
  578. ],
  579. "spans": [
  580. {
  581. "bbox": [
  582. 314,
  583. 55,
  584. 538,
  585. 305
  586. ],
  587. "score": 0.9999905824661255,
  588. "type": "image",
  589. "image_path": "c7539af438972442d0f86aa46409e6684338ddfd1fbfd6bdacf02220853ccb55.jpg"
  590. }
  591. ]
  592. }
  593. ]
  594. },
  595. {
  596. "bbox": [
  597. 310,
  598. 311,
  599. 564,
  600. 371
  601. ],
  602. "type": "image_caption",
  603. "lines": [
  604. {
  605. "bbox": [
  606. 312,
  607. 313,
  608. 562,
  609. 322
  610. ],
  611. "spans": [
  612. {
  613. "bbox": [
  614. 312,
  615. 313,
  616. 562,
  617. 322
  618. ],
  619. "score": 0.97,
  620. "content": "Figure 3: Performance of temporal matching at different levels",
  621. "type": "text"
  622. }
  623. ]
  624. },
  625. {
  626. "bbox": [
  627. 312,
  628. 325,
  629. 561,
  630. 334
  631. ],
  632. "spans": [
  633. {
  634. "bbox": [
  635. 312,
  636. 325,
  637. 561,
  638. 334
  639. ],
  640. "score": 0.98,
  641. "content": "of uniformly distributed image noise{±0,±20,±40}.Mean",
  642. "type": "text"
  643. }
  644. ]
  645. },
  646. {
  647. "bbox": [
  648. 311,
  649. 336,
  650. 563,
  651. 347
  652. ],
  653. "spans": [
  654. {
  655. "bbox": [
  656. 311,
  657. 336,
  658. 563,
  659. 347
  660. ],
  661. "score": 0.99,
  662. "content": "squared error (MSE) of disparities is plotted versus the values",
  663. "type": "text"
  664. }
  665. ]
  666. },
  667. {
  668. "bbox": [
  669. 311,
  670. 348,
  671. 561,
  672. 358
  673. ],
  674. "spans": [
  675. {
  676. "bbox": [
  677. 311,
  678. 348,
  679. 561,
  680. 358
  681. ],
  682. "score": 0.96,
  683. "content": "of the feedback coefficient X. Dashed lines correspond to the",
  684. "type": "text"
  685. }
  686. ]
  687. },
  688. {
  689. "bbox": [
  690. 311,
  691. 360,
  692. 535,
  693. 371
  694. ],
  695. "spans": [
  696. {
  697. "bbox": [
  698. 311,
  699. 360,
  700. 535,
  701. 371
  702. ],
  703. "score": 0.96,
  704. "content": "values of MSE obtained without temporal aggregation.",
  705. "type": "text"
  706. }
  707. ]
  708. }
  709. ]
  710. }
  711. ]
  712. },
  713. {
  714. "type": "image",
  715. "bbox": [
  716. 310,
  717. 418,
  718. 563,
  719. 666
  720. ],
  721. "blocks": [
  722. {
  723. "bbox": [
  724. 314,
  725. 418,
  726. 549,
  727. 623
  728. ],
  729. "type": "image_body",
  730. "lines": [
  731. {
  732. "bbox": [
  733. 314,
  734. 418,
  735. 549,
  736. 623
  737. ],
  738. "spans": [
  739. {
  740. "bbox": [
  741. 314,
  742. 418,
  743. 549,
  744. 623
  745. ],
  746. "score": 0.9999067783355713,
  747. "type": "image",
  748. "image_path": "9ac4db9197801de4a20dbc9ea17bc0c53afb7290dc8b5b45d9e92e830566cb14.jpg"
  749. }
  750. ]
  751. }
  752. ]
  753. },
  754. {
  755. "bbox": [
  756. 310,
  757. 630,
  758. 563,
  759. 666
  760. ],
  761. "type": "image_caption",
  762. "lines": [
  763. {
  764. "bbox": [
  765. 312,
  766. 631,
  767. 562,
  768. 641
  769. ],
  770. "spans": [
  771. {
  772. "bbox": [
  773. 312,
  774. 631,
  775. 562,
  776. 641
  777. ],
  778. "score": 0.94,
  779. "content": "Figure 4:Optimal values of the feedback coefficient \\ cor-",
  780. "type": "text"
  781. }
  782. ]
  783. },
  784. {
  785. "bbox": [
  786. 312,
  787. 644,
  788. 561,
  789. 652
  790. ],
  791. "spans": [
  792. {
  793. "bbox": [
  794. 312,
  795. 644,
  796. 561,
  797. 652
  798. ],
  799. "score": 0.97,
  800. "content": "responding to the smallest mean squared error (MSE)of the",
  801. "type": "text"
  802. }
  803. ]
  804. },
  805. {
  806. "bbox": [
  807. 312,
  808. 655,
  809. 513,
  810. 665
  811. ],
  812. "spans": [
  813. {
  814. "bbox": [
  815. 312,
  816. 655,
  817. 513,
  818. 665
  819. ],
  820. "score": 0.97,
  821. "content": "disparity estimates for a range of noise strengths.",
  822. "type": "text"
  823. }
  824. ]
  825. }
  826. ]
  827. }
  828. ]
  829. },
  830. {
  831. "type": "text",
  832. "bbox": [
  833. 311,
  834. 692,
  835. 563,
  836. 725
  837. ],
  838. "lines": [
  839. {
  840. "bbox": [
  841. 311,
  842. 692,
  843. 563,
  844. 702
  845. ],
  846. "spans": [
  847. {
  848. "bbox": [
  849. 311,
  850. 692,
  851. 562,
  852. 702
  853. ],
  854. "score": 0.95,
  855. "content": "of averaging out noise in the per-pixel costs by selecting",
  856. "type": "text"
  857. }
  858. ]
  859. },
  860. {
  861. "bbox": [
  862. 311,
  863. 704,
  864. 563,
  865. 713
  866. ],
  867. "spans": [
  868. {
  869. "bbox": [
  870. 311,
  871. 704,
  872. 562,
  873. 713
  874. ],
  875. "score": 0.98,
  876. "content": "matches based more heavily upon the auxiliary cost, which",
  877. "type": "text"
  878. }
  879. ]
  880. },
  881. {
  882. "bbox": [
  883. 311,
  884. 716,
  885. 563,
  886. 725
  887. ],
  888. "spans": [
  889. {
  890. "bbox": [
  891. 311,
  892. 716,
  893. 563,
  894. 725
  895. ],
  896. "score": 0.97,
  897. "content": "is essentially a much more stable running average of the cost",
  898. "type": "text"
  899. }
  900. ]
  901. }
  902. ]
  903. }
  904. ],
  905. "layout_bboxes": [
  906. {
  907. "layout_bbox": [
  908. 47,
  909. 55,
  910. 301,
  911. 726
  912. ],
  913. "layout_label": "V",
  914. "sub_layout": []
  915. },
  916. {
  917. "layout_bbox": [
  918. 310,
  919. 55,
  920. 564,
  921. 726
  922. ],
  923. "layout_label": "V",
  924. "sub_layout": []
  925. }
  926. ],
  927. "page_idx": 0,
  928. "page_size": [
  929. 612.0,
  930. 792.0
  931. ],
  932. "_layout_tree": [
  933. {
  934. "layout_bbox": [
  935. 0,
  936. 55,
  937. 612.0,
  938. 726
  939. ],
  940. "layout_label": "V",
  941. "sub_layout": [
  942. {
  943. "layout_bbox": [
  944. 47,
  945. 55,
  946. 564,
  947. 726
  948. ],
  949. "layout_label": "H",
  950. "sub_layout": [
  951. {
  952. "layout_bbox": [
  953. 47,
  954. 55,
  955. 301,
  956. 726
  957. ],
  958. "layout_label": "V",
  959. "sub_layout": []
  960. },
  961. {
  962. "layout_bbox": [
  963. 310,
  964. 55,
  965. 564,
  966. 726
  967. ],
  968. "layout_label": "V",
  969. "sub_layout": []
  970. }
  971. ]
  972. }
  973. ]
  974. }
  975. ],
  976. "images": [
  977. {
  978. "type": "image",
  979. "bbox": [
  980. 47,
  981. 100,
  982. 301,
  983. 535
  984. ],
  985. "blocks": [
  986. {
  987. "bbox": [
  988. 51,
  989. 100,
  990. 292,
  991. 484
  992. ],
  993. "type": "image_body",
  994. "lines": [
  995. {
  996. "bbox": [
  997. 51,
  998. 100,
  999. 292,
  1000. 484
  1001. ],
  1002. "spans": [
  1003. {
  1004. "bbox": [
  1005. 51,
  1006. 100,
  1007. 292,
  1008. 484
  1009. ],
  1010. "score": 0.9999815225601196,
  1011. "type": "image",
  1012. "image_path": "b07d74524eac6f46b5505b48b1e10db23f2b45cb2d21d5fec72e967e61255811.jpg"
  1013. }
  1014. ]
  1015. }
  1016. ]
  1017. },
  1018. {
  1019. "bbox": [
  1020. 47,
  1021. 488,
  1022. 301,
  1023. 535
  1024. ],
  1025. "type": "image_caption",
  1026. "lines": [
  1027. {
  1028. "bbox": [
  1029. 49,
  1030. 490,
  1031. 299,
  1032. 499
  1033. ],
  1034. "spans": [
  1035. {
  1036. "bbox": [
  1037. 49,
  1038. 490,
  1039. 299,
  1040. 499
  1041. ],
  1042. "score": 1.0,
  1043. "content": "Figure2:Twosampleframesfromthesyntheticvideose-",
  1044. "type": "text"
  1045. }
  1046. ]
  1047. },
  1048. {
  1049. "bbox": [
  1050. 48,
  1051. 501,
  1052. 300,
  1053. 512
  1054. ],
  1055. "spans": [
  1056. {
  1057. "bbox": [
  1058. 48,
  1059. 501,
  1060. 300,
  1061. 512
  1062. ],
  1063. "score": 1.0,
  1064. "content": "quence (1st row), along with their corresponding ground truth",
  1065. "type": "text"
  1066. }
  1067. ]
  1068. },
  1069. {
  1070. "bbox": [
  1071. 48,
  1072. 513,
  1073. 299,
  1074. 523
  1075. ],
  1076. "spans": [
  1077. {
  1078. "bbox": [
  1079. 48,
  1080. 513,
  1081. 299,
  1082. 523
  1083. ],
  1084. "score": 0.98,
  1085. "content": "disparity (2nd row), occlusion map (3rd row), and discontinuity",
  1086. "type": "text"
  1087. }
  1088. ]
  1089. },
  1090. {
  1091. "bbox": [
  1092. 48,
  1093. 525,
  1094. 110,
  1095. 535
  1096. ],
  1097. "spans": [
  1098. {
  1099. "bbox": [
  1100. 48,
  1101. 525,
  1102. 110,
  1103. 535
  1104. ],
  1105. "score": 0.99,
  1106. "content": "map (4th row).",
  1107. "type": "text"
  1108. }
  1109. ]
  1110. }
  1111. ]
  1112. }
  1113. ]
  1114. },
  1115. {
  1116. "type": "image",
  1117. "bbox": [
  1118. 310,
  1119. 55,
  1120. 564,
  1121. 371
  1122. ],
  1123. "blocks": [
  1124. {
  1125. "bbox": [
  1126. 314,
  1127. 55,
  1128. 538,
  1129. 305
  1130. ],
  1131. "type": "image_body",
  1132. "lines": [
  1133. {
  1134. "bbox": [
  1135. 314,
  1136. 55,
  1137. 538,
  1138. 305
  1139. ],
  1140. "spans": [
  1141. {
  1142. "bbox": [
  1143. 314,
  1144. 55,
  1145. 538,
  1146. 305
  1147. ],
  1148. "score": 0.9999905824661255,
  1149. "type": "image",
  1150. "image_path": "c7539af438972442d0f86aa46409e6684338ddfd1fbfd6bdacf02220853ccb55.jpg"
  1151. }
  1152. ]
  1153. }
  1154. ]
  1155. },
  1156. {
  1157. "bbox": [
  1158. 310,
  1159. 311,
  1160. 564,
  1161. 371
  1162. ],
  1163. "type": "image_caption",
  1164. "lines": [
  1165. {
  1166. "bbox": [
  1167. 312,
  1168. 313,
  1169. 562,
  1170. 322
  1171. ],
  1172. "spans": [
  1173. {
  1174. "bbox": [
  1175. 312,
  1176. 313,
  1177. 562,
  1178. 322
  1179. ],
  1180. "score": 0.97,
  1181. "content": "Figure 3: Performance of temporal matching at different levels",
  1182. "type": "text"
  1183. }
  1184. ]
  1185. },
  1186. {
  1187. "bbox": [
  1188. 312,
  1189. 325,
  1190. 561,
  1191. 334
  1192. ],
  1193. "spans": [
  1194. {
  1195. "bbox": [
  1196. 312,
  1197. 325,
  1198. 561,
  1199. 334
  1200. ],
  1201. "score": 0.98,
  1202. "content": "of uniformly distributed image noise{±0,±20,±40}.Mean",
  1203. "type": "text"
  1204. }
  1205. ]
  1206. },
  1207. {
  1208. "bbox": [
  1209. 311,
  1210. 336,
  1211. 563,
  1212. 347
  1213. ],
  1214. "spans": [
  1215. {
  1216. "bbox": [
  1217. 311,
  1218. 336,
  1219. 563,
  1220. 347
  1221. ],
  1222. "score": 0.99,
  1223. "content": "squared error (MSE) of disparities is plotted versus the values",
  1224. "type": "text"
  1225. }
  1226. ]
  1227. },
  1228. {
  1229. "bbox": [
  1230. 311,
  1231. 348,
  1232. 561,
  1233. 358
  1234. ],
  1235. "spans": [
  1236. {
  1237. "bbox": [
  1238. 311,
  1239. 348,
  1240. 561,
  1241. 358
  1242. ],
  1243. "score": 0.96,
  1244. "content": "of the feedback coefficient X. Dashed lines correspond to the",
  1245. "type": "text"
  1246. }
  1247. ]
  1248. },
  1249. {
  1250. "bbox": [
  1251. 311,
  1252. 360,
  1253. 535,
  1254. 371
  1255. ],
  1256. "spans": [
  1257. {
  1258. "bbox": [
  1259. 311,
  1260. 360,
  1261. 535,
  1262. 371
  1263. ],
  1264. "score": 0.96,
  1265. "content": "values of MSE obtained without temporal aggregation.",
  1266. "type": "text"
  1267. }
  1268. ]
  1269. }
  1270. ]
  1271. }
  1272. ]
  1273. },
  1274. {
  1275. "type": "image",
  1276. "bbox": [
  1277. 310,
  1278. 418,
  1279. 563,
  1280. 666
  1281. ],
  1282. "blocks": [
  1283. {
  1284. "bbox": [
  1285. 314,
  1286. 418,
  1287. 549,
  1288. 623
  1289. ],
  1290. "type": "image_body",
  1291. "lines": [
  1292. {
  1293. "bbox": [
  1294. 314,
  1295. 418,
  1296. 549,
  1297. 623
  1298. ],
  1299. "spans": [
  1300. {
  1301. "bbox": [
  1302. 314,
  1303. 418,
  1304. 549,
  1305. 623
  1306. ],
  1307. "score": 0.9999067783355713,
  1308. "type": "image",
  1309. "image_path": "9ac4db9197801de4a20dbc9ea17bc0c53afb7290dc8b5b45d9e92e830566cb14.jpg"
  1310. }
  1311. ]
  1312. }
  1313. ]
  1314. },
  1315. {
  1316. "bbox": [
  1317. 310,
  1318. 630,
  1319. 563,
  1320. 666
  1321. ],
  1322. "type": "image_caption",
  1323. "lines": [
  1324. {
  1325. "bbox": [
  1326. 312,
  1327. 631,
  1328. 562,
  1329. 641
  1330. ],
  1331. "spans": [
  1332. {
  1333. "bbox": [
  1334. 312,
  1335. 631,
  1336. 562,
  1337. 641
  1338. ],
  1339. "score": 0.94,
  1340. "content": "Figure 4:Optimal values of the feedback coefficient \\ cor-",
  1341. "type": "text"
  1342. }
  1343. ]
  1344. },
  1345. {
  1346. "bbox": [
  1347. 312,
  1348. 644,
  1349. 561,
  1350. 652
  1351. ],
  1352. "spans": [
  1353. {
  1354. "bbox": [
  1355. 312,
  1356. 644,
  1357. 561,
  1358. 652
  1359. ],
  1360. "score": 0.97,
  1361. "content": "responding to the smallest mean squared error (MSE)of the",
  1362. "type": "text"
  1363. }
  1364. ]
  1365. },
  1366. {
  1367. "bbox": [
  1368. 312,
  1369. 655,
  1370. 513,
  1371. 665
  1372. ],
  1373. "spans": [
  1374. {
  1375. "bbox": [
  1376. 312,
  1377. 655,
  1378. 513,
  1379. 665
  1380. ],
  1381. "score": 0.97,
  1382. "content": "disparity estimates for a range of noise strengths.",
  1383. "type": "text"
  1384. }
  1385. ]
  1386. }
  1387. ]
  1388. }
  1389. ]
  1390. }
  1391. ],
  1392. "tables": [],
  1393. "interline_equations": [],
  1394. "discarded_blocks": [],
  1395. "need_drop": false,
  1396. "drop_reason": [],
  1397. "para_blocks": [
  1398. {
  1399. "type": "text",
  1400. "bbox": [
  1401. 47,
  1402. 57,
  1403. 299,
  1404. 93
  1405. ],
  1406. "lines": [
  1407. {
  1408. "bbox": [
  1409. 47,
  1410. 57,
  1411. 299,
  1412. 68
  1413. ],
  1414. "spans": [
  1415. {
  1416. "bbox": [
  1417. 49,
  1418. 57,
  1419. 298,
  1420. 68
  1421. ],
  1422. "score": 0.98,
  1423. "content": "of the synthetic stereo scene from a single camera perspective",
  1424. "type": "text"
  1425. }
  1426. ]
  1427. },
  1428. {
  1429. "bbox": [
  1430. 47,
  1431. 71,
  1432. 299,
  1433. 80
  1434. ],
  1435. "spans": [
  1436. {
  1437. "bbox": [
  1438. 49,
  1439. 71,
  1440. 299,
  1441. 80
  1442. ],
  1443. "score": 0.96,
  1444. "content": "along with the ground truth disparity,occlusion map,and",
  1445. "type": "text"
  1446. }
  1447. ]
  1448. },
  1449. {
  1450. "bbox": [
  1451. 47,
  1452. 82,
  1453. 123,
  1454. 93
  1455. ],
  1456. "spans": [
  1457. {
  1458. "bbox": [
  1459. 49,
  1460. 82,
  1461. 123,
  1462. 93
  1463. ],
  1464. "score": 0.99,
  1465. "content": "discontinuitymap.",
  1466. "type": "text"
  1467. }
  1468. ]
  1469. }
  1470. ]
  1471. },
  1472. {
  1473. "type": "image",
  1474. "bbox": [
  1475. 47,
  1476. 100,
  1477. 301,
  1478. 535
  1479. ],
  1480. "blocks": [
  1481. {
  1482. "bbox": [
  1483. 51,
  1484. 100,
  1485. 292,
  1486. 484
  1487. ],
  1488. "type": "image_body",
  1489. "lines": [
  1490. {
  1491. "bbox": [
  1492. 51,
  1493. 100,
  1494. 292,
  1495. 484
  1496. ],
  1497. "spans": [
  1498. {
  1499. "bbox": [
  1500. 51,
  1501. 100,
  1502. 292,
  1503. 484
  1504. ],
  1505. "score": 0.9999815225601196,
  1506. "type": "image",
  1507. "image_path": "b07d74524eac6f46b5505b48b1e10db23f2b45cb2d21d5fec72e967e61255811.jpg"
  1508. }
  1509. ]
  1510. }
  1511. ]
  1512. },
  1513. {
  1514. "bbox": [
  1515. 47,
  1516. 488,
  1517. 301,
  1518. 535
  1519. ],
  1520. "type": "image_caption",
  1521. "lines": [
  1522. {
  1523. "bbox": [
  1524. 49,
  1525. 490,
  1526. 299,
  1527. 499
  1528. ],
  1529. "spans": [
  1530. {
  1531. "bbox": [
  1532. 49,
  1533. 490,
  1534. 299,
  1535. 499
  1536. ],
  1537. "score": 1.0,
  1538. "content": "Figure2:Twosampleframesfromthesyntheticvideose-",
  1539. "type": "text"
  1540. }
  1541. ]
  1542. },
  1543. {
  1544. "bbox": [
  1545. 48,
  1546. 501,
  1547. 300,
  1548. 512
  1549. ],
  1550. "spans": [
  1551. {
  1552. "bbox": [
  1553. 48,
  1554. 501,
  1555. 300,
  1556. 512
  1557. ],
  1558. "score": 1.0,
  1559. "content": "quence (1st row), along with their corresponding ground truth",
  1560. "type": "text"
  1561. }
  1562. ]
  1563. },
  1564. {
  1565. "bbox": [
  1566. 48,
  1567. 513,
  1568. 299,
  1569. 523
  1570. ],
  1571. "spans": [
  1572. {
  1573. "bbox": [
  1574. 48,
  1575. 513,
  1576. 299,
  1577. 523
  1578. ],
  1579. "score": 0.98,
  1580. "content": "disparity (2nd row), occlusion map (3rd row), and discontinuity",
  1581. "type": "text"
  1582. }
  1583. ]
  1584. },
  1585. {
  1586. "bbox": [
  1587. 48,
  1588. 525,
  1589. 110,
  1590. 535
  1591. ],
  1592. "spans": [
  1593. {
  1594. "bbox": [
  1595. 48,
  1596. 525,
  1597. 110,
  1598. 535
  1599. ],
  1600. "score": 0.99,
  1601. "content": "map (4th row).",
  1602. "type": "text"
  1603. }
  1604. ]
  1605. }
  1606. ]
  1607. }
  1608. ]
  1609. },
  1610. {
  1611. "type": "text",
  1612. "bbox": [
  1613. 47,
  1614. 549,
  1615. 299,
  1616. 678
  1617. ],
  1618. "lines": [
  1619. {
  1620. "bbox": [
  1621. 58,
  1622. 549,
  1623. 299,
  1624. 558
  1625. ],
  1626. "spans": [
  1627. {
  1628. "bbox": [
  1629. 58,
  1630. 549,
  1631. 298,
  1632. 558
  1633. ],
  1634. "score": 0.98,
  1635. "content": "Theresultsof temporalstereomatching aregiveninFigure",
  1636. "type": "text"
  1637. }
  1638. ]
  1639. },
  1640. {
  1641. "bbox": [
  1642. 47,
  1643. 561,
  1644. 299,
  1645. 570
  1646. ],
  1647. "spans": [
  1648. {
  1649. "bbox": [
  1650. 47,
  1651. 561,
  1652. 298,
  1653. 570
  1654. ],
  1655. "score": 0.98,
  1656. "content": "3foruniformadditivenoiseconfinedtotherangesof±O",
  1657. "type": "text"
  1658. }
  1659. ]
  1660. },
  1661. {
  1662. "bbox": [
  1663. 47,
  1664. 573,
  1665. 299,
  1666. 582
  1667. ],
  1668. "spans": [
  1669. {
  1670. "bbox": [
  1671. 49,
  1672. 573,
  1673. 299,
  1674. 582
  1675. ],
  1676. "score": 0.96,
  1677. "content": "±20, and ±40. Each performance plot is given as a function",
  1678. "type": "text"
  1679. }
  1680. ]
  1681. },
  1682. {
  1683. "bbox": [
  1684. 47,
  1685. 585,
  1686. 299,
  1687. 594
  1688. ],
  1689. "spans": [
  1690. {
  1691. "bbox": [
  1692. 48,
  1693. 585,
  1694. 299,
  1695. 594
  1696. ],
  1697. "score": 0.95,
  1698. "content": "of the feedback coefficient X. As with the majority of temporal",
  1699. "type": "text"
  1700. }
  1701. ]
  1702. },
  1703. {
  1704. "bbox": [
  1705. 47,
  1706. 597,
  1707. 299,
  1708. 606
  1709. ],
  1710. "spans": [
  1711. {
  1712. "bbox": [
  1713. 49,
  1714. 597,
  1715. 299,
  1716. 606
  1717. ],
  1718. "score": 0.99,
  1719. "content": "stereomatching methods,improvements are negligible when",
  1720. "type": "text"
  1721. }
  1722. ]
  1723. },
  1724. {
  1725. "bbox": [
  1726. 47,
  1727. 609,
  1728. 299,
  1729. 618
  1730. ],
  1731. "spans": [
  1732. {
  1733. "bbox": [
  1734. 48,
  1735. 609,
  1736. 299,
  1737. 618
  1738. ],
  1739. "score": 0.97,
  1740. "content": "no noise is added to the images [1o], [19]. This is largely due",
  1741. "type": "text"
  1742. }
  1743. ]
  1744. },
  1745. {
  1746. "bbox": [
  1747. 47,
  1748. 621,
  1749. 299,
  1750. 629
  1751. ],
  1752. "spans": [
  1753. {
  1754. "bbox": [
  1755. 48,
  1756. 621,
  1757. 299,
  1758. 629
  1759. ],
  1760. "score": 1.0,
  1761. "content": "tothefactthatthevideousedtoevaluatethesemethodsis",
  1762. "type": "text"
  1763. }
  1764. ]
  1765. },
  1766. {
  1767. "bbox": [
  1768. 47,
  1769. 633,
  1770. 299,
  1771. 641
  1772. ],
  1773. "spans": [
  1774. {
  1775. "bbox": [
  1776. 48,
  1777. 633,
  1778. 299,
  1779. 641
  1780. ],
  1781. "score": 1.0,
  1782. "content": "computergeneratedwithverylittlenoisetostartwith,thus",
  1783. "type": "text"
  1784. }
  1785. ]
  1786. },
  1787. {
  1788. "bbox": [
  1789. 47,
  1790. 644,
  1791. 299,
  1792. 654
  1793. ],
  1794. "spans": [
  1795. {
  1796. "bbox": [
  1797. 48,
  1798. 644,
  1799. 299,
  1800. 654
  1801. ],
  1802. "score": 0.98,
  1803. "content": "the noise suppression achieved with temporal stereo matching",
  1804. "type": "text"
  1805. }
  1806. ]
  1807. },
  1808. {
  1809. "bbox": [
  1810. 47,
  1811. 657,
  1812. 299,
  1813. 666
  1814. ],
  1815. "spans": [
  1816. {
  1817. "bbox": [
  1818. 48,
  1819. 657,
  1820. 299,
  1821. 666
  1822. ],
  1823. "score": 0.98,
  1824. "content": "showslittletonoimprovementovermethodsthatoperate on",
  1825. "type": "text"
  1826. }
  1827. ]
  1828. },
  1829. {
  1830. "bbox": [
  1831. 47,
  1832. 669,
  1833. 113,
  1834. 678
  1835. ],
  1836. "spans": [
  1837. {
  1838. "bbox": [
  1839. 48,
  1840. 669,
  1841. 113,
  1842. 678
  1843. ],
  1844. "score": 1.0,
  1845. "content": "pairsofimages.",
  1846. "type": "text"
  1847. }
  1848. ]
  1849. }
  1850. ]
  1851. },
  1852. {
  1853. "type": "text",
  1854. "bbox": [
  1855. 47,
  1856. 680,
  1857. 299,
  1858. 725
  1859. ],
  1860. "lines": [
  1861. {
  1862. "bbox": [
  1863. 58,
  1864. 680,
  1865. 299,
  1866. 690
  1867. ],
  1868. "spans": [
  1869. {
  1870. "bbox": [
  1871. 59,
  1872. 680,
  1873. 298,
  1874. 690
  1875. ],
  1876. "score": 0.97,
  1877. "content": "Significantimprovementsin accuracy canbeseenin Figure",
  1878. "type": "text"
  1879. }
  1880. ]
  1881. },
  1882. {
  1883. "bbox": [
  1884. 47,
  1885. 692,
  1886. 299,
  1887. 701
  1888. ],
  1889. "spans": [
  1890. {
  1891. "bbox": [
  1892. 48,
  1893. 692,
  1894. 298,
  1895. 701
  1896. ],
  1897. "score": 0.97,
  1898. "content": "3 when the noise has ranges of ±20, and ±40.In this scenario",
  1899. "type": "text"
  1900. }
  1901. ]
  1902. },
  1903. {
  1904. "bbox": [
  1905. 47,
  1906. 703,
  1907. 299,
  1908. 714
  1909. ],
  1910. "spans": [
  1911. {
  1912. "bbox": [
  1913. 48,
  1914. 703,
  1915. 299,
  1916. 714
  1917. ],
  1918. "score": 0.98,
  1919. "content": "the effect of noise in the current frame is reduced by increasing",
  1920. "type": "text"
  1921. }
  1922. ]
  1923. },
  1924. {
  1925. "bbox": [
  1926. 47,
  1927. 716,
  1928. 299,
  1929. 725
  1930. ],
  1931. "spans": [
  1932. {
  1933. "bbox": [
  1934. 48,
  1935. 716,
  1936. 299,
  1937. 725
  1938. ],
  1939. "score": 0.96,
  1940. "content": "thefeedbackcoefficientX.Thisincreasing ofXhas theeffect",
  1941. "type": "text"
  1942. }
  1943. ]
  1944. }
  1945. ]
  1946. },
  1947. {
  1948. "type": "image",
  1949. "bbox": [
  1950. 310,
  1951. 55,
  1952. 564,
  1953. 371
  1954. ],
  1955. "blocks": [
  1956. {
  1957. "bbox": [
  1958. 314,
  1959. 55,
  1960. 538,
  1961. 305
  1962. ],
  1963. "type": "image_body",
  1964. "lines": [
  1965. {
  1966. "bbox": [
  1967. 314,
  1968. 55,
  1969. 538,
  1970. 305
  1971. ],
  1972. "spans": [
  1973. {
  1974. "bbox": [
  1975. 314,
  1976. 55,
  1977. 538,
  1978. 305
  1979. ],
  1980. "score": 0.9999905824661255,
  1981. "type": "image",
  1982. "image_path": "c7539af438972442d0f86aa46409e6684338ddfd1fbfd6bdacf02220853ccb55.jpg"
  1983. }
  1984. ]
  1985. }
  1986. ]
  1987. },
  1988. {
  1989. "bbox": [
  1990. 310,
  1991. 311,
  1992. 564,
  1993. 371
  1994. ],
  1995. "type": "image_caption",
  1996. "lines": [
  1997. {
  1998. "bbox": [
  1999. 312,
  2000. 313,
  2001. 562,
  2002. 322
  2003. ],
  2004. "spans": [
  2005. {
  2006. "bbox": [
  2007. 312,
  2008. 313,
  2009. 562,
  2010. 322
  2011. ],
  2012. "score": 0.97,
  2013. "content": "Figure 3: Performance of temporal matching at different levels",
  2014. "type": "text"
  2015. }
  2016. ]
  2017. },
  2018. {
  2019. "bbox": [
  2020. 312,
  2021. 325,
  2022. 561,
  2023. 334
  2024. ],
  2025. "spans": [
  2026. {
  2027. "bbox": [
  2028. 312,
  2029. 325,
  2030. 561,
  2031. 334
  2032. ],
  2033. "score": 0.98,
  2034. "content": "of uniformly distributed image noise{±0,±20,±40}.Mean",
  2035. "type": "text"
  2036. }
  2037. ]
  2038. },
  2039. {
  2040. "bbox": [
  2041. 311,
  2042. 336,
  2043. 563,
  2044. 347
  2045. ],
  2046. "spans": [
  2047. {
  2048. "bbox": [
  2049. 311,
  2050. 336,
  2051. 563,
  2052. 347
  2053. ],
  2054. "score": 0.99,
  2055. "content": "squared error (MSE) of disparities is plotted versus the values",
  2056. "type": "text"
  2057. }
  2058. ]
  2059. },
  2060. {
  2061. "bbox": [
  2062. 311,
  2063. 348,
  2064. 561,
  2065. 358
  2066. ],
  2067. "spans": [
  2068. {
  2069. "bbox": [
  2070. 311,
  2071. 348,
  2072. 561,
  2073. 358
  2074. ],
  2075. "score": 0.96,
  2076. "content": "of the feedback coefficient X. Dashed lines correspond to the",
  2077. "type": "text"
  2078. }
  2079. ]
  2080. },
  2081. {
  2082. "bbox": [
  2083. 311,
  2084. 360,
  2085. 535,
  2086. 371
  2087. ],
  2088. "spans": [
  2089. {
  2090. "bbox": [
  2091. 311,
  2092. 360,
  2093. 535,
  2094. 371
  2095. ],
  2096. "score": 0.96,
  2097. "content": "values of MSE obtained without temporal aggregation.",
  2098. "type": "text"
  2099. }
  2100. ]
  2101. }
  2102. ]
  2103. }
  2104. ]
  2105. },
  2106. {
  2107. "type": "image",
  2108. "bbox": [
  2109. 310,
  2110. 418,
  2111. 563,
  2112. 666
  2113. ],
  2114. "blocks": [
  2115. {
  2116. "bbox": [
  2117. 314,
  2118. 418,
  2119. 549,
  2120. 623
  2121. ],
  2122. "type": "image_body",
  2123. "lines": [
  2124. {
  2125. "bbox": [
  2126. 314,
  2127. 418,
  2128. 549,
  2129. 623
  2130. ],
  2131. "spans": [
  2132. {
  2133. "bbox": [
  2134. 314,
  2135. 418,
  2136. 549,
  2137. 623
  2138. ],
  2139. "score": 0.9999067783355713,
  2140. "type": "image",
  2141. "image_path": "9ac4db9197801de4a20dbc9ea17bc0c53afb7290dc8b5b45d9e92e830566cb14.jpg"
  2142. }
  2143. ]
  2144. }
  2145. ]
  2146. },
  2147. {
  2148. "bbox": [
  2149. 310,
  2150. 630,
  2151. 563,
  2152. 666
  2153. ],
  2154. "type": "image_caption",
  2155. "lines": [
  2156. {
  2157. "bbox": [
  2158. 312,
  2159. 631,
  2160. 562,
  2161. 641
  2162. ],
  2163. "spans": [
  2164. {
  2165. "bbox": [
  2166. 312,
  2167. 631,
  2168. 562,
  2169. 641
  2170. ],
  2171. "score": 0.94,
  2172. "content": "Figure 4:Optimal values of the feedback coefficient \\ cor-",
  2173. "type": "text"
  2174. }
  2175. ]
  2176. },
  2177. {
  2178. "bbox": [
  2179. 312,
  2180. 644,
  2181. 561,
  2182. 652
  2183. ],
  2184. "spans": [
  2185. {
  2186. "bbox": [
  2187. 312,
  2188. 644,
  2189. 561,
  2190. 652
  2191. ],
  2192. "score": 0.97,
  2193. "content": "responding to the smallest mean squared error (MSE)of the",
  2194. "type": "text"
  2195. }
  2196. ]
  2197. },
  2198. {
  2199. "bbox": [
  2200. 312,
  2201. 655,
  2202. 513,
  2203. 665
  2204. ],
  2205. "spans": [
  2206. {
  2207. "bbox": [
  2208. 312,
  2209. 655,
  2210. 513,
  2211. 665
  2212. ],
  2213. "score": 0.97,
  2214. "content": "disparity estimates for a range of noise strengths.",
  2215. "type": "text"
  2216. }
  2217. ]
  2218. }
  2219. ]
  2220. }
  2221. ]
  2222. },
  2223. {
  2224. "type": "text",
  2225. "bbox": [
  2226. 311,
  2227. 692,
  2228. 563,
  2229. 725
  2230. ],
  2231. "lines": [
  2232. {
  2233. "bbox": [
  2234. 311,
  2235. 692,
  2236. 563,
  2237. 702
  2238. ],
  2239. "spans": [
  2240. {
  2241. "bbox": [
  2242. 311,
  2243. 692,
  2244. 562,
  2245. 702
  2246. ],
  2247. "score": 0.95,
  2248. "content": "of averaging out noise in the per-pixel costs by selecting",
  2249. "type": "text"
  2250. }
  2251. ]
  2252. },
  2253. {
  2254. "bbox": [
  2255. 311,
  2256. 704,
  2257. 563,
  2258. 713
  2259. ],
  2260. "spans": [
  2261. {
  2262. "bbox": [
  2263. 311,
  2264. 704,
  2265. 562,
  2266. 713
  2267. ],
  2268. "score": 0.98,
  2269. "content": "matches based more heavily upon the auxiliary cost, which",
  2270. "type": "text"
  2271. }
  2272. ]
  2273. },
  2274. {
  2275. "bbox": [
  2276. 311,
  2277. 716,
  2278. 563,
  2279. 725
  2280. ],
  2281. "spans": [
  2282. {
  2283. "bbox": [
  2284. 311,
  2285. 716,
  2286. 563,
  2287. 725
  2288. ],
  2289. "score": 0.97,
  2290. "content": "is essentially a much more stable running average of the cost",
  2291. "type": "text"
  2292. }
  2293. ]
  2294. }
  2295. ]
  2296. }
  2297. ]
  2298. }
  2299. ],
  2300. "_parse_type": "ocr",
  2301. "_version_name": "0.7.0b1"
  2302. }