Explorar o código

fix coco pretrained weight setting error for deeplabv3p_mobilenetv3_large_ssld

FlyingQianMM %!s(int64=5) %!d(string=hai) anos
pai
achega
33896dcf4a

+ 3 - 3
paddlex/cv/models/utils/pretrain_weights.py

@@ -146,7 +146,8 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
     if flag == 'COCO':
         if class_name == 'DeepLabv3p' and backbone in [
                 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
-                'MobileNetV2_x1.5', 'MobileNetV2_x2.0'
+                'MobileNetV2_x1.5', 'MobileNetV2_x2.0',
+                'MobileNetV3_large_x1_0_ssld'
         ]:
             model_name = '{}_{}'.format(class_name, backbone)
             logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))
@@ -169,8 +170,7 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
             flag = 'IMAGENET'
         if class_name == 'DeepLabv3p' and backbone in [
                 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
-                'MobileNetV2_x1.5', 'MobileNetV2_x2.0',
-                'MobileNetV3_large_x1_0_ssld'
+                'MobileNetV2_x1.5', 'MobileNetV2_x2.0'
         ]:
             model_name = '{}_{}'.format(class_name, backbone)
             logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))

+ 2 - 1
paddlex/cv/nets/mobilenet_v3.py

@@ -150,7 +150,8 @@ class MobileNetV3():
             else:
                 raise NotImplementedError
 
-        self.modify_bottle_params(output_stride)
+        if self.for_seg:
+            self.modify_bottle_params(output_stride)
 
     def modify_bottle_params(self, output_stride=None):
         if output_stride is not None and output_stride % 2 != 0: