Przeglądaj źródła

WIP on cpp_trt: f55d701 optimize code structure

Channingss 5 lat temu
rodzic
commit
aafd6fe481
2 zmienionych plików z 138 dodań i 8 usunięć
  1. 14 8
      paddlex/command.py
  2. 124 0
      paddlex/cv/models/base.py

+ 14 - 8
paddlex/command.py

@@ -30,6 +30,12 @@ def arg_parser():
         default=False,
         help="export inference model for C++/Python deployment")
     parser.add_argument(
+        "--export_onnx",
+        "-eo",
+        action="store_true",
+        default=False,
+        help="export onnx model for deployment")
+    parser.add_argument(
         "--fixed_input_shape",
         "-fs",
         default=None,
@@ -64,15 +70,15 @@ def main():
         model = pdx.load_model(args.model_dir, fixed_input_shape)
         model.export_inference_model(args.save_dir)
 
-    if args.export_onnx:
-        assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model"
-        assert args.save_dir is not None, "--save_dir should be defined to save onnx model"
-        fixed_input_shape = eval(args.fixed_input_shape)
-        assert len(
-            fixed_input_shape) == 2, "len of fixed input shape must == 2"
+   # if args.export_onnx:
+   #     assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model"
+   #     assert args.save_dir is not None, "--save_dir should be defined to save onnx model"
+   #     fixed_input_shape = eval(args.fixed_input_shape)
+   #     assert len(
+   #         fixed_input_shape) == 2, "len of fixed input shape must == 2"
 
-        model = pdx.load_model(args.model_dir, fixed_input_shape)
-        model.export_onnx_model(args.save_dir)
+   #     model = pdx.load_model(args.model_dir, fixed_input_shape)
+   #     model.export_onnx_model(args.save_dir)
 
 
 if __name__ == "__main__":

+ 124 - 0
paddlex/cv/models/base.py

@@ -327,6 +327,130 @@ class BaseAPI:
         logging.info(
             "Model for inference deploy saved in {}.".format(save_dir))
 
+   # def export_onnx_model(self, save_dir, onnx_model=None):
+   #     from fluid.utils import op_io_info, init_name_prefix
+   #     from onnx import helper, checker
+   #     import fluid_onnx.ops as ops
+   #     from fluid_onnx.variables import paddle_variable_to_onnx_tensor, paddle_onnx_weight
+   #     from debug.model_check import debug_model, Tracke
+   #     place = fluid.CPUPlace()
+   #     exe = fluid.Executor(place)
+   #     inference_scope = fluid.core.Scope() 
+   #     with fluid.scope_guard(inference_scope):
+   #         test_input_names = [
+   #         var.name for var in list(self.test_inputs.values())
+   #         ]
+   #         inputs_outputs_list = ["fetch", "feed"] 
+   #         weights, weights_value_info = [], []
+   #         global_block = self.test_program.global_block()
+   #         for var_name in global_block.vars:
+   #             var = global_block.var(var_name)
+   #             if var_name not in feed_fetch_list\
+   #                 and var.persistable:
+   #                 weight, val_info = paddle_onnx_weight(
+   #                     var=var, scope=inference_scope)
+   #                 weights.append(weight)
+   #                 weights_value_info.append(val_info)
+   #         # Create inputs
+   #         inputs = [
+   #         paddle_variable_to_onnx_tensor(v, global_block)
+   #         for v in test_input_names
+   #         ]
+   #         print("load the model parameter done.")
+   #         onnx_nodes = []
+   #         op_check_list = []
+   #         op_trackers = []
+   #         nms_first_index = -1
+   #         nms_outputs = []
+   #         for block in inference_program.blocks:
+   #             for op in block.ops:
+   #                 if op.type in ops.node_maker:
+   #                     # TODO(kuke): deal with the corner case that vars in 
+   #                     #     different blocks have the same name
+   #                     node_proto = ops.node_maker[str(op.type)](operator=op,
+   #                                                               block=block)
+   #                     op_outputs = []
+   #                     last_node = None
+   #                     if isinstance(node_proto, tuple):
+   #                         onnx_nodes.extend(list(node_proto))
+   #                         last_node = list(node_proto)
+   #                     else:
+   #                         onnx_nodes.append(node_proto)
+   #                         last_node = [node_proto]
+   #                     tracker = Tracker(str(op.type), last_node)
+   #                     op_trackers.append(tracker)
+   #                     op_check_list.append(str(op.type))
+   #                     if op.type == "multiclass_nms" and nms_first_index < 0:
+   #                         nms_first_index = 0
+   #                     if nms_first_index >= 0:
+   #                         _, _, output_op = op_io_info(op)
+   #                         for output in output_op:
+   #                             nms_outputs.extend(output_op[output])
+   #                 else:
+   #                     if op.type not in ['feed', 'fetch']:
+   #                         op_check_list.append(op.type)
+   #         print('The operator sets to run test case.')
+   #         print(set(op_check_list))
+   #         # Create outputs
+   #         # Get the new names for outputs if they've been renamed in nodes' making
+   #         renamed_outputs = op_io_info.get_all_renamed_outputs()
+   #         test_outputs = list(self.test_outputs.values())
+   #         test_outputs_names = [var.name for var in self.test_outpus.values]
+   #         test_outputs_names = [
+   #             name if name not in renamed_outputs else renamed_outputs[name]
+   #             for name in test_outputs_names
+   #         ]
+   #         outputs = [
+   #             paddle_variable_to_onnx_tensor(v, global_block)
+   #             for v in test_outputs_names
+   #         ]
+   #         # Make graph
+   #         #model_name = os.path.basename(args.fluid_model.strip('/')).split('.')[0]
+   #         model_name = 'test' 
+   #         onnx_graph = helper.make_graph(
+   #             nodes=onnx_nodes,
+   #             name=model_name,
+   #             initializer=weights,
+   #             inputs=inputs + weights_value_info,
+   #             outputs=outputs)
+
+   #         # Make model
+   #         onnx_model = helper.make_model(onnx_graph, producer_name='PaddlePaddle')
+
+   #         # Model check
+   #         checker.check_model(onnx_model)
+
+   #         # Print model
+   #         #if to_print_model:
+   #         #    print("The converted model is:\n{}".format(onnx_model))
+   #         # Save converted model
+   #         
+   #         if onnx_model is not None:
+   #             try:
+   #                 onnx_model_file = osp.join(save_dir, onnx_model)
+   #                 with open(onnx_model_file, 'wb') as f:
+   #                     f.write(onnx_model.SerializeToString())
+   #                 print("Saved converted model to path: %s" % onnx_model_file)
+   #                 # If in debug mode, need to save op list, add we will check op 
+   #                 #if args.debug:
+   #                 #    op_check_list = list(set(op_check_list))
+   #                 #    check_outputs = []
+
+   #                 #    for node_proto in onnx_nodes:
+   #                 #        check_outputs.extend(node_proto.output)
+
+   #                 #    print("The num of %d operators need to check, and %d op outputs need to check."\
+   #                 #          %(len(op_check_list), len(check_outputs)))
+
+   #                 #    debug_model(op_check_list, op_trackers, nms_outputs, args)
+
+   #             except Exception as e:
+   #                 print(e)
+   #                 print(
+   #                     "Convert Failed! Please use the debug message to find error."
+   #                 )
+   #                 sys.exit(-1)
+
     def train_loop(self,
                    num_epochs,
                    train_dataset,