瀏覽代碼

fix the doc

sunyanfang01 5 年之前
父節點
當前提交
b1036e9d07
共有 2 個文件被更改,包括 2 次插入377 次删除
  1. 1 11
      docs/apis/visualize.md
  2. 1 366
      docs/datasets.md

+ 1 - 11
docs/apis/visualize.md

@@ -137,14 +137,4 @@ paddlex.interpret.visualize(img_file,
 
 
 ### 使用示例
-> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz)和[数据集](https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg.tar.gz),参考[`paddlex.datasets.ImageNet`类](.//datasets/classification.html#imagenet)构建test_dataset。在该数据集上预测可解释性的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/interpret.py)。
-```
-import paddlex as pdx
-model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
-pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG', 
-          model,
-          test_dataset, 
-          algo='lime',
-          save_dir=./)
-# 可视化结果保存在./
-```
+> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/interpret.py)。

+ 1 - 366
docs/datasets.md

@@ -1,367 +1,2 @@
 # 数据集格式说明
-
----
-## 图像分类ImageNet
-
-图像分类ImageNet数据集包含对应多个标签的图像文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--labelA  # 标签为labelA的图像目录
-|  |--a1.jpg
-|  |--...
-|  └--...
-|
-|--...
-|
-|--labelZ  # 标签为labelZ的图像目录
-|  |--z1.jpg
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为图像文件对应的标签id(从0开始)。如下所示:
-```
-labelA/a1.jpg 0
-labelZ/z1.jpg 25
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz),下载蔬菜分类分类数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.ImageNet`([API说明](./apis/datasets/classification.html#imagenet))加载分类数据集。
-
-## 目标检测VOC
-目标检测VOC数据集包含图像文件夹、标注信息文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--JPEGImages  # 图像目录
-|  |--xxx1.jpg
-|  |--...
-|  └--...
-|
-|--Annotations  # 标注信息目录
-|  |--xxx1.xml
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注文件相对于dataset的相对路径。如下所示:
-```
-JPEGImages/xxx1.jpg Annotations/xxx1.xml
-JPEGImages/xxx2.jpg Annotations/xxx2.xml
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz),下载昆虫检测数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.VOCDetection`([API说明](./apis/datasets/detection.html#vocdetection))加载目标检测VOC数据集。
-
-## 目标检测和实例分割COCO
-目标检测和实例分割COCO数据集包含图像文件夹及图像标注信息文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--JPEGImages  # 图像目录
-|  |--xxx1.jpg
-|  |--...
-|  └--...
-|
-|--train.json  # 训练相关信息文件
-|
-└--val.json  # 验证相关信息文件
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train.json`和`val.json`存储与标注信息、图像文件相关的信息。如下所示:
-
-```
-{
-  "annotations": [
-    {
-      "iscrowd": 0,
-      "category_id": 1,
-      "id": 1,
-      "area": 33672.0,
-      "image_id": 1,
-      "bbox": [232, 32, 138, 244],
-      "segmentation": [[32, 168, 365, 117, ...]]
-    },
-    ...
-  ],
-  "images": [
-    {
-      "file_name": "xxx1.jpg",
-      "height": 512,
-      "id": 267,
-      "width": 612
-    },
-    ...
-  ]
-  "categories": [
-    {
-      "name": "labelA",
-      "id": 1,
-      "supercategory": "component"
-    }
-  ]
-}
-```
-其中,每个字段的含义如下所示:
-
-| 域名 | 字段名 | 含义 | 数据类型 | 备注 |
-|:-----|:--------|:------------|------|:-----|
-| annotations | id | 标注信息id | int | 从1开始 |
-| annotations | iscrowd      | 标注框是否为一组对象 | int | 只有0、1两种取值 |
-| annotations | category_id  | 标注框类别id | int |  |
-| annotations | area         | 标注框的面积 | float |  |
-| annotations | image_id     | 当前标注信息所在图像的id | int |  |
-| annotations | bbox         | 标注框坐标 | list | 长度为4,分别代表x,y,w,h |
-| annotations | segmentation | 标注区域坐标 | list | list中有至少1个list,每个list由每个小区域坐标点的横纵坐标(x,y)组成 |
-| images          | id                | 图像id | int | 从1开始 |
-| images   | file_name         | 图像文件名 | str |  |
-| images      | height            | 图像高度 | int |  |
-| images       | width             | 图像宽度 | int |  |
-| categories  | id            | 类别id | int | 从1开始 |
-| categories | name          | 类别标签名 | str |  |
-| categories | supercategory | 类别父类的标签名 | str |  |
-
-
-[点击这里](https://bj.bcebos.com/paddlex/datasets/garbage_ins_det.tar.gz),下载垃圾实例分割数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.COCODetection`([API说明](./apis/datasets/detection.html#cocodetection))加载COCO格式数据集。
-
-## 语义分割数据
-语义分割数据集包含原图、标注图及相应的文件列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--images  # 原图目录
-|  |--xxx1.png
-|  |--...
-|  └--...
-|
-|--annotations  # 标注图目录
-|  |--xxx1.png
-|  |--...
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表
-
-```
-其中,相应的文件名可根据需要自行定义。
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注图像文件相对于dataset的相对路径。如下所示:
-```
-images/xxx1.png annotations/xxx1.png
-images/xxx2.png annotations/xxx2.png
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-background
-labelA
-labelB
-...
-```
-
-标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增(一般第一个类别为`background`),
-例如0,1,2,3表示有4种类别,标注类别最多为256类。其中可以指定特定的像素值用于表示该值的像素不参与训练和评估(默认为255)。
-
-[点击这里](https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz),下载视盘语义分割数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.SegReader`([API说明](./apis/datasets/semantic_segmentation.html#segdataset))加载语义分割数据集。
-
-
-## 图像分类EasyDataCls
-
-图像分类EasyDataCls数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-{"labels": [{"name": "labelA"}]}
-```
-其中,`name`字段代表对应图像的类别。  
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataCls数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataCls`([API说明](./apis/datasets/classification.html#easydatacls))加载分类数据集。
-
-
-## 目标检测和实例分割EasyDataDet
-
-目标检测和实例分割EasyDataDet数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录ß
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA", 
-            "mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"}, 
-           {"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
-            "mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"}, 
-           ...]}
-```
-其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示: 
-
-| 字段名 | 含义 | 数据类型 | 备注 |
-|:--------|:------------|------|:-----|
-| x1 | 标注框左下角横坐标 | int | |
-| y1 | 标注框左下角纵坐标 | int | |
-| x2 | 标注框右上角横坐标 | int | |
-| y2 | 标注框右上角纵坐标 | int | |
-| name | 标注框中物体类标 | str | |
-| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段可以不存在,当不存在时只能进行目标检测 |
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataDet数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataDet`([API说明](./apis/datasets/detection.html#easydatadet))加载分类数据集。
-
-## 语义分割EasyDataSeg
-
-语义分割EasyDataSeg数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
-参考数据文件结构如下:
-```
-./dataset/  # 数据集根目录ß
-|--easydata  # 存放图像和json文件的文件夹
-|  |--0001.jpg
-|  |--0001.json
-|  |--0002.jpg
-|  |--0002.json
-|  └--...
-|
-|--train_list.txt  # 训练文件列表文件
-|
-|--val_list.txt  # 验证文件列表文件
-|
-└--labels.txt  # 标签列表文件
-
-```
-其中,图像文件名应与json文件名一一对应。   
-
-每个json文件存储于`labels`相关的信息。如下所示:
-```
-"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA", 
-            "mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"}, 
-           {"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
-            "mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"}, 
-           ...]}
-```
-其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示: 
-
-| 字段名 | 含义 | 数据类型 | 备注 |
-|:--------|:------------|------|:-----|
-| x1 | 标注框左下角横坐标 | int | |
-| y1 | 标注框左下角纵坐标 | int | |
-| x2 | 标注框右上角横坐标 | int | |
-| y2 | 标注框右上角纵坐标 | int | |
-| name | 标注框中物体类标 | str | |
-| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段必须存在 |
-
-`train_list.txt`和`val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
-```
-easydata/0001.jpg easydata/0001.json
-easydata/0002.jpg easydata/0002.json
-...
-```
-
-`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
-```
-labelA
-labelB
-...
-```
-
-[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataSeg数据集。  
-在PaddleX中,使用`paddlex.cv.datasets.EasyDataSeg`([API说明](./apis/datasets/semantic_segmentation.html#easydataseg))加载分类数据集。
-
+该部分内容已迁移至[附录](./appendix/datasets.html)