| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.paddleseg.cvlibs import manager, param_init
- from paddlex.paddleseg.models import layers
- from paddlex.paddleseg.utils import utils
- __all__ = ['ShuffleNetV2']
- @manager.MODELS.add_component
- class ShuffleNetV2(nn.Layer):
- def __init__(self, num_classes, pretrained=None, align_corners=False):
- super().__init__()
- self.pretrained = pretrained
- self.num_classes = num_classes
- self.align_corners = align_corners
- self.conv_bn0 = _ConvBNReLU(3, 36, 3, 2, 1)
- self.conv_bn1 = _ConvBNReLU(36, 18, 1, 1, 0)
- self.block1 = nn.Sequential(
- SFNetV2Module(
- 36, stride=2, out_channels=72),
- SFNetV2Module(
- 72, stride=1),
- SFNetV2Module(
- 72, stride=1),
- SFNetV2Module(
- 72, stride=1))
- self.block2 = nn.Sequential(
- SFNetV2Module(
- 72, stride=2),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1),
- SFNetV2Module(
- 144, stride=1))
- self.depthwise_separable0 = _SeparableConvBNReLU(144, 64, 3, stride=1)
- self.depthwise_separable1 = _SeparableConvBNReLU(82, 64, 3, stride=1)
- weight_attr = paddle.ParamAttr(
- learning_rate=1.,
- regularizer=paddle.regularizer.L2Decay(coeff=0.),
- initializer=nn.initializer.XavierUniform())
- self.deconv = nn.Conv2DTranspose(
- 64,
- self.num_classes,
- 2,
- stride=2,
- padding=0,
- weight_attr=weight_attr,
- bias_attr=True)
- self.init_weight()
- def forward(self, x):
- ## Encoder
- conv1 = self.conv_bn0(x) # encoder 1
- shortcut = self.conv_bn1(conv1) # shortcut 1
- pool = F.max_pool2d(
- conv1, kernel_size=3, stride=2, padding=1) # encoder 2
- # Block 1
- conv = self.block1(pool) # encoder 3
- # Block 2
- conv = self.block2(conv) # encoder 4
- ### decoder
- conv = self.depthwise_separable0(conv)
- shortcut_shape = paddle.shape(shortcut)[2:]
- conv_b = F.interpolate(
- conv,
- shortcut_shape,
- mode='bilinear',
- align_corners=self.align_corners)
- concat = paddle.concat(x=[shortcut, conv_b], axis=1)
- decode_conv = self.depthwise_separable1(concat)
- logit = self.deconv(decode_conv)
- return [logit]
- def init_weight(self):
- for layer in self.sublayers():
- if isinstance(layer, nn.Conv2D):
- param_init.normal_init(layer.weight, std=0.001)
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
- param_init.constant_init(layer.weight, value=1.0)
- param_init.constant_init(layer.bias, value=0.0)
- if self.pretrained is not None:
- utils.load_pretrained_model(self, self.pretrained)
- class _ConvBNReLU(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- groups=1,
- **kwargs):
- super().__init__()
- weight_attr = paddle.ParamAttr(
- learning_rate=1, initializer=nn.initializer.KaimingUniform())
- self._conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size,
- padding=padding,
- stride=stride,
- groups=groups,
- weight_attr=weight_attr,
- bias_attr=False,
- **kwargs)
- self._batch_norm = layers.SyncBatchNorm(out_channels)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- x = F.relu(x)
- return x
- class _ConvBN(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- groups=1,
- **kwargs):
- super().__init__()
- weight_attr = paddle.ParamAttr(
- learning_rate=1, initializer=nn.initializer.KaimingUniform())
- self._conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size,
- padding=padding,
- stride=stride,
- groups=groups,
- weight_attr=weight_attr,
- bias_attr=False,
- **kwargs)
- self._batch_norm = layers.SyncBatchNorm(out_channels)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- return x
- class _SeparableConvBNReLU(nn.Layer):
- def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
- super().__init__()
- self.depthwise_conv = _ConvBN(
- in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- padding=int(kernel_size / 2),
- groups=in_channels,
- **kwargs)
- self.piontwise_conv = _ConvBNReLU(
- in_channels,
- out_channels,
- kernel_size=1,
- groups=1,
- stride=1,
- padding=0)
- def forward(self, x):
- x = self.depthwise_conv(x)
- x = self.piontwise_conv(x)
- return x
- class SFNetV2Module(nn.Layer):
- def __init__(self, input_channels, stride, out_channels=None):
- super().__init__()
- if stride == 1:
- branch_channel = int(input_channels / 2)
- else:
- branch_channel = input_channels
- if out_channels is None:
- self.in_channels = int(branch_channel)
- else:
- self.in_channels = int(out_channels / 2)
- self._depthwise_separable_0 = _SeparableConvBNReLU(
- input_channels, self.in_channels, 3, stride=stride)
- self._conv = _ConvBNReLU(
- branch_channel, self.in_channels, 1, stride=1, padding=0)
- self._depthwise_separable_1 = _SeparableConvBNReLU(
- self.in_channels, self.in_channels, 3, stride=stride)
- self.stride = stride
- def forward(self, input):
- if self.stride == 1:
- shortcut, branch = paddle.split(x=input, num_or_sections=2, axis=1)
- else:
- branch = input
- shortcut = self._depthwise_separable_0(input)
- branch_1x1 = self._conv(branch)
- branch_dw1x1 = self._depthwise_separable_1(branch_1x1)
- output = paddle.concat(x=[shortcut, branch_dw1x1], axis=1)
- # channel shuffle
- out_shape = paddle.shape(output)
- h, w = out_shape[2], out_shape[3]
- output = paddle.reshape(x=output, shape=[0, 2, self.in_channels, h, w])
- output = paddle.transpose(x=output, perm=[0, 2, 1, 3, 4])
- output = paddle.reshape(
- x=output, shape=[0, 2 * self.in_channels, h, w])
- return output
- if __name__ == '__main__':
- import numpy as np
- import os
- np.random.seed(100)
- paddle.seed(100)
- net = ShuffleNetV2(10)
- img = np.random.random(size=(4, 3, 100, 100)).astype('float32')
- img = paddle.to_tensor(img)
- out = net(img)
- print(out)
- net.forward = paddle.jit.to_static(net.forward)
- save_path = os.path.join('.', 'model')
- in_var = paddle.ones([4, 3, 100, 100])
- paddle.jit.save(net, save_path, input_spec=[in_var])
|