| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import paddle
- import numpy as np
- from PIL import Image
- from paddlex.paddleseg.cvlibs import manager
- from paddlex.paddleseg.transforms import Compose
- from paddlex.paddleseg.transforms import functional as F
- @manager.DATASETS.add_component
- class Dataset(paddle.io.Dataset):
- """
- Pass in a custom dataset that conforms to the format.
- Args:
- transforms (list): Transforms for image.
- dataset_root (str): The dataset directory.
- num_classes (int): Number of classes.
- mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'.
- train_path (str, optional): The train dataset file. When mode is 'train', train_path is necessary.
- The contents of train_path file are as follow:
- image1.jpg ground_truth1.png
- image2.jpg ground_truth2.png
- val_path (str. optional): The evaluation dataset file. When mode is 'val', val_path is necessary.
- The contents is the same as train_path
- test_path (str, optional): The test dataset file. When mode is 'test', test_path is necessary.
- The annotation file is not necessary in test_path file.
- separator (str, optional): The separator of dataset list. Default: ' '.
- edge (bool, optional): Whether to compute edge while training. Default: False
- Examples:
- import paddlex.paddleseg.transforms as T
- from paddlex.paddleseg.datasets import Dataset
- transforms = [T.RandomPaddingCrop(crop_size=(512,512)), T.Normalize()]
- dataset_root = 'dataset_root_path'
- train_path = 'train_path'
- num_classes = 2
- dataset = Dataset(transforms = transforms,
- dataset_root = dataset_root,
- num_classes = 2,
- train_path = train_path,
- mode = 'train')
- """
- def __init__(self,
- transforms,
- dataset_root,
- num_classes,
- mode='train',
- train_path=None,
- val_path=None,
- test_path=None,
- separator=' ',
- ignore_index=255,
- edge=False):
- self.dataset_root = dataset_root
- self.transforms = Compose(transforms)
- self.file_list = list()
- mode = mode.lower()
- self.mode = mode
- self.num_classes = num_classes
- self.ignore_index = ignore_index
- self.edge = edge
- if mode.lower() not in ['train', 'val', 'test']:
- raise ValueError(
- "mode should be 'train', 'val' or 'test', but got {}.".format(
- mode))
- if self.transforms is None:
- raise ValueError("`transforms` is necessary, but it is None.")
- self.dataset_root = dataset_root
- if not os.path.exists(self.dataset_root):
- raise FileNotFoundError('there is not `dataset_root`: {}.'.format(
- self.dataset_root))
- if mode == 'train':
- if train_path is None:
- raise ValueError(
- 'When `mode` is "train", `train_path` is necessary, but it is None.'
- )
- elif not os.path.exists(train_path):
- raise FileNotFoundError('`train_path` is not found: {}'.format(
- train_path))
- else:
- file_path = train_path
- elif mode == 'val':
- if val_path is None:
- raise ValueError(
- 'When `mode` is "val", `val_path` is necessary, but it is None.'
- )
- elif not os.path.exists(val_path):
- raise FileNotFoundError('`val_path` is not found: {}'.format(
- val_path))
- else:
- file_path = val_path
- else:
- if test_path is None:
- raise ValueError(
- 'When `mode` is "test", `test_path` is necessary, but it is None.'
- )
- elif not os.path.exists(test_path):
- raise FileNotFoundError('`test_path` is not found: {}'.format(
- test_path))
- else:
- file_path = test_path
- with open(file_path, 'r') as f:
- for line in f:
- items = line.strip().split(separator)
- if len(items) != 2:
- if mode == 'train' or mode == 'val':
- raise ValueError(
- "File list format incorrect! In training or evaluation task it should be"
- " image_name{}label_name\\n".format(separator))
- image_path = os.path.join(self.dataset_root, items[0])
- label_path = None
- else:
- image_path = os.path.join(self.dataset_root, items[0])
- label_path = os.path.join(self.dataset_root, items[1])
- self.file_list.append([image_path, label_path])
- def __getitem__(self, idx):
- image_path, label_path = self.file_list[idx]
- if self.mode == 'test':
- im, _ = self.transforms(im=image_path)
- im = im[np.newaxis, ...]
- return im, image_path
- elif self.mode == 'val':
- im, _ = self.transforms(im=image_path)
- label = np.asarray(Image.open(label_path))
- label = label[np.newaxis, :, :]
- return im, label
- else:
- im, label = self.transforms(im=image_path, label=label_path)
- if self.edge:
- edge_mask = F.mask_to_binary_edge(
- label, radius=2, num_classes=self.num_classes)
- return im, label, edge_mask
- else:
- return im, label
- def __len__(self):
- return len(self.file_list)
|