| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # encoding: utf-8
- import numpy as np
- from PIL import Image, ImageOps, ImageEnhance
- def int_parameter(level, maxval):
- """Helper function to scale `val` between 0 and maxval .
- Args:
- level: Level of the operation that will be between [0, `PARAMETER_MAX`].
- maxval: Maximum value that the operation can have. This will be scaled to
- level/PARAMETER_MAX.
- Returns:
- An int that results from scaling `maxval` according to `level`.
- """
- return int(level * maxval / 10)
- def float_parameter(level, maxval):
- """Helper function to scale `val` between 0 and maxval.
- Args:
- level: Level of the operation that will be between [0, `PARAMETER_MAX`].
- maxval: Maximum value that the operation can have. This will be scaled to
- level/PARAMETER_MAX.
- Returns:
- A float that results from scaling `maxval` according to `level`.
- """
- return float(level) * maxval / 10.
- def sample_level(n):
- return np.random.uniform(low=0.1, high=n)
- def autocontrast(pil_img, *args):
- return ImageOps.autocontrast(pil_img)
- def equalize(pil_img, *args):
- return ImageOps.equalize(pil_img)
- def posterize(pil_img, level, *args):
- level = int_parameter(sample_level(level), 4)
- return ImageOps.posterize(pil_img, 4 - level)
- def rotate(pil_img, level, *args):
- degrees = int_parameter(sample_level(level), 30)
- if np.random.uniform() > 0.5:
- degrees = -degrees
- return pil_img.rotate(degrees, resample=Image.BILINEAR)
- def solarize(pil_img, level, *args):
- level = int_parameter(sample_level(level), 256)
- return ImageOps.solarize(pil_img, 256 - level)
- def shear_x(pil_img, level):
- level = float_parameter(sample_level(level), 0.3)
- if np.random.uniform() > 0.5:
- level = -level
- return pil_img.transform(
- pil_img.size,
- Image.AFFINE, (1, level, 0, 0, 1, 0),
- resample=Image.BILINEAR)
- def shear_y(pil_img, level):
- level = float_parameter(sample_level(level), 0.3)
- if np.random.uniform() > 0.5:
- level = -level
- return pil_img.transform(
- pil_img.size,
- Image.AFFINE, (1, 0, 0, level, 1, 0),
- resample=Image.BILINEAR)
- def translate_x(pil_img, level):
- level = int_parameter(sample_level(level), pil_img.size[0] / 3)
- if np.random.random() > 0.5:
- level = -level
- return pil_img.transform(
- pil_img.size,
- Image.AFFINE, (1, 0, level, 0, 1, 0),
- resample=Image.BILINEAR)
- def translate_y(pil_img, level):
- level = int_parameter(sample_level(level), pil_img.size[1] / 3)
- if np.random.random() > 0.5:
- level = -level
- return pil_img.transform(
- pil_img.size,
- Image.AFFINE, (1, 0, 0, 0, 1, level),
- resample=Image.BILINEAR)
- # operation that overlaps with ImageNet-C's test set
- def color(pil_img, level, *args):
- level = float_parameter(sample_level(level), 1.8) + 0.1
- return ImageEnhance.Color(pil_img).enhance(level)
- # operation that overlaps with ImageNet-C's test set
- def contrast(pil_img, level, *args):
- level = float_parameter(sample_level(level), 1.8) + 0.1
- return ImageEnhance.Contrast(pil_img).enhance(level)
- # operation that overlaps with ImageNet-C's test set
- def brightness(pil_img, level, *args):
- level = float_parameter(sample_level(level), 1.8) + 0.1
- return ImageEnhance.Brightness(pil_img).enhance(level)
- # operation that overlaps with ImageNet-C's test set
- def sharpness(pil_img, level, *args):
- level = float_parameter(sample_level(level), 1.8) + 0.1
- return ImageEnhance.Sharpness(pil_img).enhance(level)
- augmentations = [
- autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
- translate_x, translate_y
- ]
|